Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 495
1.
Commun Biol ; 7(1): 539, 2024 May 07.
Article En | MEDLINE | ID: mdl-38714886

Intervertebral disc degeneration (IDD) is a highly prevalent musculoskeletal disorder affecting millions of adults worldwide, but a poor understanding of its pathogenesis has limited the effectiveness of therapy. In the current study, we integrated untargeted LC/MS metabolomics and magnetic resonance spectroscopy data to investigate metabolic profile alterations during IDD. Combined with validation via a large-cohort analysis, we found excessive lipid droplet accumulation in the nucleus pulposus cells of advanced-stage IDD samples. We also found abnormal palmitic acid (PA) accumulation in IDD nucleus pulposus cells, and PA exposure resulted in lipid droplet accumulation and cell senescence in an endoplasmic reticulum stress-dependent manner. Complementary transcriptome and proteome profiles enabled us to identify solute carrier transporter (SLC) 43A3 involvement in the regulation of the intracellular PA level. SLC43A3 was expressed at low levels and negatively correlated with intracellular lipid content in IDD nucleus pulposus cells. Overexpression of SLC43A3 significantly alleviated PA-induced endoplasmic reticulum stress, lipid droplet accumulation and cell senescence by inhibiting PA uptake. This work provides novel integration analysis-based insight into the metabolic profile alterations in IDD and further reveals new therapeutic targets for IDD treatment.


Cellular Senescence , Endoplasmic Reticulum Stress , Intervertebral Disc Degeneration , Lipid Droplets , Nucleus Pulposus , Palmitic Acid , Nucleus Pulposus/metabolism , Nucleus Pulposus/drug effects , Nucleus Pulposus/pathology , Nucleus Pulposus/cytology , Endoplasmic Reticulum Stress/drug effects , Palmitic Acid/metabolism , Palmitic Acid/pharmacology , Cellular Senescence/drug effects , Intervertebral Disc Degeneration/metabolism , Intervertebral Disc Degeneration/pathology , Humans , Lipid Droplets/metabolism , Male , Female , Adult , Middle Aged
2.
BMC Psychol ; 12(1): 261, 2024 May 10.
Article En | MEDLINE | ID: mdl-38730471

BACKGROUND: The global issue of ecological resource scarcity, worsened by climate change, necessitates effective methods to promote resource conservation. One commonly used approach is presenting ecological resource scarcity information. However, the effectiveness of this method remains uncertain, particularly in an unpredictable world. This research aims to examine the role of perceived environmental unpredictability in moderating the impact of ecological resource scarcity information on pro-environmental behavior (PEB). METHODS: We conducted three studies to test our hypothesis on moderation. Study 1 (N = 256) measured perceived general environmental unpredictability, perceived resource scarcity and daily PEB frequencies in a cross-sectional survey. Study 2 (N = 107) took it a step further by manipulating resource scarcity. Importantly, to increase ecological validity, Study 3 (N = 135) manipulated the information on both ecological resource scarcity and nature-related environmental unpredictability, and measured real water and paper consumption using a newly developed washing-hands paradigm. RESULTS: In Study 1, we discovered that perceived resource scarcity positively predicted PEB, but only when individuals perceive the environment as less unpredictable (interaction effect: 95% CI = [-0.09, -0.01], ΔR2 = 0.018). Furthermore, by manipulating scarcity information, Study 2 revealed that only for individuals with lower levels of environmental unpredictability presenting ecological resource scarcity information could decrease forest resource consumption intention (interaction effect: 95%CI = [-0.025, -0.031], ΔR2 = .04). Moreover, Study 3 found that the negative effect of water resource scarcity information on actual water and (interaction effect: 95%CI = [3.037, 22.097], ηp2 = .050) paper saving behaviors (interaction effect: 95%CI = [0.021, 0.275], ηp2 = .040), as well as hypothetical forest resource consumption (interaction effect: 95%CI = [-0.053, 0.849], ηp2 = .023) emerged only for people who receiving weaker environmental unpredictability information. CONCLUSION: Across three studies, we provide evidence to support the moderation hypothesis that environmental unpredictability weakens the positive effect of ecological resource scarcity information on PEB, offering important theoretical and practical implications on the optimal use of resource scarcity to enhance PEB.


Conservation of Natural Resources , Humans , Adult , Male , Female , Cross-Sectional Studies , Conservation of Natural Resources/methods , Young Adult , Environment , Middle Aged , Climate Change
3.
Br J Soc Psychol ; 2024 May 14.
Article En | MEDLINE | ID: mdl-38742773

Natural resources are limited, and people often share these limited resources in groups, which creates an intergroup resource dilemma. To understand individuals' sustainable behaviours in intergroup resource dilemmas in the context of group interactions, the present research systematically investigates the effect of outgroup conspiracy theories on sustainable behaviours and preliminarily explores the internal mechanism underlying this effect. First, a survey study (Study 1) relying on real-world intergroup relations first confirmed the negative correlation between outgroup conspiracy beliefs and sustainable intentions in intergroup resource dilemmas. Then, an online experimental study that utilized the real situation of a region in China (Study 2) tested the causal relationship between exposure to an outgroup conspiracy theory and sustainable intentions, as well as showing the mediating role of intergroup threat perception underlying this relationship. Finally, a preregistered experimental laboratory study (Study 3) further verified the causal effect of exposure to an outgroup conspiracy theory on sustainable behaviours, again confirming the mediating role of intergroup threat perception. In general, our research demonstrates that exposure to an outgroup conspiracy theory stimulates individuals' environmental neglect and reduces their sustainable behaviours by increasing their perceptions of intergroup threat when faced with intergroup resource dilemmas.

4.
J Chem Phys ; 160(20)2024 May 28.
Article En | MEDLINE | ID: mdl-38775745

The understanding on the growth mechanism of complex gold nanostructures both experimentally and theoretically can guide their design and fabrication toward various applications. In this work, we report a cysteine-directed overgrowth of penta-twinned nanorod seeds into jagged gold bipyramids with discontinuous stepped {hhk} facets. By monitoring the growth process, we find that {hhk} facets with large k/h values (∼7) are formed first at two ends of the nanorods, followed by the protrusion of the middle section exposing {hhk} facets with smaller indices (k/h ∼ 2-3). Molecular dynamics simulations indicate that the strong adsorption of cysteine molecules on {110} facets is likely responsible for the formation of stepped {hhk} facets, and the stronger adsorption of cysteine molecules on {hhk} facets with smaller k/h compared to that on {hhk} facets with larger k/h is a possible cause of the discontinuity of {hhk} facets at the middle of gold bipyramids. The obtained jagged gold bipyramids display large field enhancement under illumination due to their sharp nanostructures, demonstrating their application potentials in surface-enhanced spectroscopy and catalysis.

5.
PLoS One ; 19(4): e0297849, 2024.
Article En | MEDLINE | ID: mdl-38625951

More and more evidence shows that abnormal lipid metabolism leads to immune system dysfunction in AMD and promotes the occurrence of AMD by changing the homeostasis of ocular inflammation. However, the molecular mechanism underlying the effect of lipid metabolism on the phenotype and function of macrophages is still unclear, and the mechanism of association between AMD and cancer and COVID-19 has not been reported. The purpose of this study is to explore the interaction between lipid metabolism related genes, ferroptosis related genes and immunity in AMD, find out the key genes that affect the ferroptosis of AMD through lipid metabolism pathway and the molecular mechanism that mediates the action of macrophages, and find out the possible mechanism of lipid metabolism and potential co-therapeutic targets between AMD and cancer and COVID-19, so as to improve treatment decision-making and clinical results. For the first time, we have comprehensively analyzed the fatty acid molecule related genes, ferroptosis related genes and immune microenvironment of AMD patients, and determined that mast cells and M1 macrophages are the main causes of AMD inflammation, and found that SCD is the core gene in AMD that inhibits ferroptosis through lipid metabolism pathway, and verified the difference in the expression of SCD in AMD in a separate external data set. Based on the analysis of the mechanism of action of the SCD gene, we found for the first time that Has-miR-199a-3p/RELA/SCD is the core axis of action of lipid metabolism pathway to inhibit the ferroptosis of AMD. By inhibiting the immune checkpoint, we can enhance the immune cell activity of AMD and lead to the transformation of macrophages from M2 to M1, thereby promoting the inflammation and pathological angiogenesis of AMD. At the same time, we found that ACOX2 and PECR, as genes for fatty acid metabolism, may regulate the expression of SCD during the occurrence and development of COVID-19, thus affecting the occurrence and development of AMD. We found that FASD1 may be a key gene for the joint action of AMD and COVID-19, and SCD regulates the immune infiltration of macrophages in glioma and germ line tumors. In conclusion, our results can provide theoretical basis for the pathogenesis of AMD, help guide the treatment of AMD patients and their potentially related diseases and help to design effective drug targets.


COVID-19 , MicroRNAs , Neoplasms , Humans , MicroRNAs/metabolism , Lipid Metabolism/genetics , Angiogenesis , Macrophages/metabolism , Inflammation/pathology , Fatty Acids/metabolism , Neoplasms/pathology , COVID-19/pathology , Tumor Microenvironment , Transcription Factor RelA/metabolism
6.
Eur J Med Chem ; 270: 116387, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38593589

Activating apoptosis has long been viewed as an anti-cancer process, but recently increasing evidence has accumulated that induction of ferroptosis has emerged as a promising strategy for cancer therapeutics. Glutathione peroxidase 4 (GPX4) is one of the pivotal factors regulating ferroptosis that targeted inhibition or degradation of GPX4 could effectively trigger ferroptosis. In this study, a series of ML162-quinone conjugates were constructed by using pharmacophore hybridization and bioisosterism strategies, with the aim of obtaining more active anticancer agents via the ferroptosis and apoptosis dual cell death processes. Of these compounds, GIC-20 was identified as the most active one that exhibited promising anticancer activity both in vitro and in vivo via ferroptosis and apoptosis dual-targeting processes, without obvious toxicity compared with ML162. On one hand, GIC-20 could trigger ferroptosis in cells by inducing intracellular lipid peroxide and ROS accumulation, and destroying mitochondrial structure. In addition to GPX4 inhibition, GIC-20 can also trigger ferroptosis via proteasomal-mediated degradation of GPX4, suggesting GIC-20 may function as a molecule glue degrader. On the other hand, GIC-20 can also induce apoptosis via upregulating the level of apoptotic protein Bax and downregulating the level of anti-apoptotic protein Bcl-2 in HT1080 cells. Furthermore, GIC-20 also enhanced the sensitivity of resistant MIA-PaCa-2-AMG510R cells to AMG510, suggesting the great potential of GIC-20 in overcoming the acquired resistance of KRASG12C inhibitors. Overall, GIC-20 represents a novel dual ferroptosis/apoptosis inducer warranting further development for cancer therapeutics and overcoming drug resistance.


Aniline Compounds , Ferroptosis , Naphthoquinones , Neoplasms , Thiophenes , Humans , Naphthoquinones/pharmacology , Apoptosis
7.
Nat Commun ; 15(1): 3445, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38658533

Mutations in isocitrate dehydrogenases (IDH) are oncogenic events due to the generation of oncogenic metabolite 2-hydroxyglutarate. However, the role of wild-type IDH in cancer development remains elusive. Here we show that wild-type IDH2 is highly expressed in triple negative breast cancer (TNBC) cells and promotes their proliferation in vitro and tumor growth in vivo. Genetic silencing or pharmacological inhibition of wt-IDH2 causes a significant increase in α-ketoglutarate (α-KG), indicating a suppression of reductive tricarboxylic acid (TCA) cycle. The aberrant accumulation of α-KG due to IDH2 abrogation inhibits mitochondrial ATP synthesis and promotes HIF-1α degradation, leading to suppression of glycolysis. Such metabolic double-hit results in ATP depletion and suppression of tumor growth, and renders TNBC cells more sensitive to doxorubicin treatment. Our study reveals a metabolic property of TNBC cells with active utilization of glutamine via reductive TCA metabolism, and suggests that wild-type IDH2 plays an important role in this metabolic process and could be a potential therapeutic target for TNBC.


Cell Proliferation , Citric Acid Cycle , Isocitrate Dehydrogenase , Ketoglutaric Acids , Triple Negative Breast Neoplasms , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/metabolism , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Humans , Female , Animals , Cell Line, Tumor , Citric Acid Cycle/drug effects , Ketoglutaric Acids/metabolism , Mice , Cell Proliferation/drug effects , Glycolysis/drug effects , Adenosine Triphosphate/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Mitochondria/metabolism , Mitochondria/drug effects , Glutamine/metabolism , Xenograft Model Antitumor Assays , Mutation
8.
BMC Med Genomics ; 17(1): 105, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38664735

BACKGROUND: Research on the fatty acid metabolism related gene SLC27A2 is currently mainly focused on solid tumors, and its mechanism of action in hematological tumors has not been reported. METHOD: This study aims to explore the pathological and immune mechanisms of the fatty acid metabolism related gene SLC27A2 in hematological tumors and verify its functional role in hematological tumors through cell experiments to improve treatment decisions and clinical outcomes of hematological tumors. RESULT: This study identified the fatty acid metabolism related gene SLC27A2 as a common differentially expressed gene between DLBCL and AML. Immune microenvironment analysis showed that SLC27A2 was significantly positively correlated with T cell CD4 + , T cell CD8 + , endothelial cells, macrophages, and NK cells in DLBCL. In AML, there is a significant negative correlation between SLC27A2 and B cells, T cell CD8 + , and macrophages. SLC27A2 participates in the immune process of hematological tumors through T cell CD8 + and macrophages. The GESA results indicate that high expression of SLC27A2 is mainly involved in the fatty acid pathway, immune pathway, and cell cycle pathway of DLBCL. The low expression of SLC27A2 is mainly involved in the immune pathway of AML. Therefore, SLC27A2 is mainly involved in the pathological mechanisms of hematological tumors through immune pathways, and cell experiments have also confirmed that SLC27A2 is involved in the regulation of DLBCL cells. CONCLUSION: In summary, our research results comprehensively report for the first time the mechanism of action of SLC27A2 in the immune microenvironment of DLBCL and AML, and for the first time verify the cycle and apoptotic effects of the fatty acid related gene SLC27A2 in DLBCL cells through cell experiments. Research can help improve the treatment of AML and DLBCL patients.


Cell Cycle , Lymphoma, Large B-Cell, Diffuse , Tumor Microenvironment , Humans , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/immunology , Lymphoma, Large B-Cell, Diffuse/pathology , Tumor Microenvironment/immunology , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Gene Expression Regulation, Neoplastic , Hematologic Neoplasms/genetics , Hematologic Neoplasms/immunology , Hematologic Neoplasms/pathology , Cell Line, Tumor , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/immunology , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/metabolism , Fatty Acids/metabolism
9.
J Environ Manage ; 357: 120695, 2024 Apr.
Article En | MEDLINE | ID: mdl-38552521

Urbanization can either directly occupy forests or indirectly lead to forest loss elsewhere through cultivated land displacement, resulting in further forest fragmentation and ecosystem service (ES) loss. However, the effects of urban expansion on forest area and ESs are unknown, and this is especially true for indirect effects. Taking Zhejiang Province, China, a typical deforested province, as an example, this study quantified the direct and indirect effects of urban expansion on forest area and five ESs (timber yield, water yield, carbon sequestration, soil conservation, and biodiversity) from 2000 to 2020, explored the relationship between forest structure (forest proportion, mean patch area, edge density, and mean euclidean nearest neighbor distance) change and ESs, and revealed the telecoupling of urban expansion and forest loss and cascade effects among urbanization, deforestation, forest structure, and ESs. The results indicated that the indirect forest loss (4.30%-6.15%) caused by cultivated land displacement due to urban expansion was larger than the direct forest loss (2.42%). Urban expansion has a greater negative impact on carbon sequestration (6.40%-8.20%), water yield (6.08%-7.78%), and biodiversity (5.79%-7.44%) than on timber yield (4.77%-6.17%) and soil conservation (4.43%-5.77%). The indirect forest ES loss was approximately 2.83-4.34 times greater than the direct forest ES loss. Most forest ESs showed a nonlinear significant positive correlation with changes in forest proportion and mean patch area and a significant nonlinear negative correlation with changes in edge density and mean Euclidean nearest neighbor distance (p < 0.05). There is telecoupling between urban expansion in one region and forest ES loss in other distant regions. This study contributes to guiding sustainable forest conservation and management globally.


Conservation of Natural Resources , Ecosystem , Forests , Soil , China , Water
10.
Adv Sci (Weinh) ; 11(18): e2307899, 2024 May.
Article En | MEDLINE | ID: mdl-38460164

Gastric cancer (GC) presents a formidable global health challenge, and conventional therapies face efficacy limitations. Ubiquitin-specific protease 7 (USP7) plays pivotal roles in GC development, immune response, and chemo-resistance, making it a promising target. Various USP7 inhibitors have shown selectivity and efficacy in preclinical studies. However, the mechanistic role of USP7 has not been fully elucidated, and currently, no USP7 inhibitors have been approved for clinical use. In this study, DHPO is identified as a potent USP7 inhibitor for GC treatment through in silico screening. DHPO demonstrates significant anti-tumor activity in vitro, inhibiting cell viability and clonogenic ability, and preventing tumor migration and invasion. In vivo studies using orthotopic gastric tumor mouse models validate DHPO's efficacy in suppressing tumor growth and metastasis without significant toxicity. Mechanistically, DHPO inhibition triggers ferroptosis, evidenced by mitochondrial alterations, lipid Reactive Oxygen Species (ROS), Malondialdehyde (MDA) accumulation, and iron overload. Further investigations unveil USP7's regulation of Stearoyl-CoA Desaturase (SCD) through deubiquitination, linking USP7 inhibition to SCD degradation and ferroptosis induction. Overall, this study identifies USP7 as a key player in ferroptosis of GC, elucidates DHPO's inhibitory mechanisms, and highlights its potential for GC treatment by inducing ferroptosis through SCD regulation.


Ferroptosis , Stearoyl-CoA Desaturase , Stomach Neoplasms , Ubiquitin-Specific Peptidase 7 , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Stomach Neoplasms/drug therapy , Stomach Neoplasms/pathology , Ferroptosis/drug effects , Ferroptosis/genetics , Ubiquitin-Specific Peptidase 7/metabolism , Ubiquitin-Specific Peptidase 7/genetics , Animals , Mice , Humans , Stearoyl-CoA Desaturase/metabolism , Stearoyl-CoA Desaturase/genetics , Cell Line, Tumor , Disease Models, Animal
11.
J Org Chem ; 89(7): 5029-5037, 2024 04 05.
Article En | MEDLINE | ID: mdl-38531374

Inubritantrimer A (1), a trace trimerized sesquiterpenoid [4 + 2] adduct featuring an unusual exo-exo type spiro-polycyclic scaffold, together with three new endo-exo [4 + 2] adducts, inubritantrimers B-D (2-4), were discovered from the flowers of Inula britannica. Their structures were elucidated using 1D/2D NMR, X-ray diffraction, and ECD approaches. 1 is characterized as a novel exo-exo trimer, synthesized biogenetically from three sesquiterpenoid monomers, featuring a unique linkage of C-11/C-1', C-13/C-3' and C-13'/C-3″, C-11'/C-1″ through a two-step exo [4 + 2] cycloaddition process. Compounds 1-4 exhibited modest cytotoxicity against breast cancer cells with IC50 values in the range of 5.84-12.01 µM.


Inula , Sesquiterpenes , Inula/chemistry , Molecular Structure , Magnetic Resonance Spectroscopy , Sesquiterpenes/pharmacology , Sesquiterpenes/chemistry
12.
Head Neck ; 46(6): E61-E66, 2024 Jun.
Article En | MEDLINE | ID: mdl-38469981

BACKGROUND: Extrathyroid implantation or dissemination of thyroid tissue secondary to a thyroid procedure is rare. Most of these belonged to thyroid carcinoma with metastatic potential and uncommon for benign pathologies. METHODS: We report the case of a 31-year-old female who was identified to have multiple subcutaneous implantation of thyroid tissue 5 years after transoral endoscopic thyroidectomy vestibular approach. A comprehensive literature search on implantation of thyroid tissue secondary to thyroid procedures was performed. RESULTS: Accidental tearing of the capsule during previous surgery may lead to the subcutaneous implantation. Through literature review, a total 29 articles with 47 patients were identified. 33.3% were benign lesions, and implantation was mostly secondary to fine needle aspiration biopsy (46.5%). CONCLUSIONS: Subcutaneous or port site implantation after endoscopic thyroid surgery may occur in benign thyroid pathologies and therefore, oncologic principles must be strictly followed during surgery regardless of its histopathological nature.


Goiter, Nodular , Thyroidectomy , Humans , Female , Thyroidectomy/methods , Thyroidectomy/adverse effects , Adult , Goiter, Nodular/surgery , Goiter, Nodular/pathology , Natural Orifice Endoscopic Surgery/methods , Natural Orifice Endoscopic Surgery/adverse effects , Endoscopy/methods
13.
J Orthop Res ; 2024 Mar 12.
Article En | MEDLINE | ID: mdl-38472744

Lateral platform collapse in fixations of lateral tibial plateau fractures (TPFs) using either double-lag screws fixation (DSF) or locking-plate fixation (LPF) is not rare. This study aimed to explore the effect of enhancing the interfragmentary compression force (IFCF) on fixation stability in lateral TPFs in normal and osteoporotic bones using finite element analysis. Finite element models of DSF in normal bone and LPF in normal and osteoporotic bones were established to simulate the fixations of lateral TPF. After model validation, axial compressive forces of 500, 1000, 1500, and 2500 N to the tibial plateau along with an IFCF of 0, 100, 200, and 300 N were applied. The maximum axial micromotion of the lateral fragment (MAM-LF), maximal translational micromotion of the lateral fragment (MTM-LF), peak von Mises stress (VMS), and peak equivalent elastic strain of the lateral fragment (EES-LF) were evaluated. The MAM-LF showed a decreasing trend as the IFCF increased in all models. For DSF models, the peak VMS of implants increased as the IFCF increased when the axial loads were 500 and 1000 N. The peak EES-LF decreased as the IFCF increased under axial loads of 1000, 1500, and 2500 N. For the normal and osteoporotic LPF models, the peak VMS of the implants decreased as the IFCF increased. Peak EES-LF decreased as IFCF increased. In conclusion, enhancing IFCF was beneficial in improving the fixation stability of lateral TPF. The optimal IFCF for DSF and LPF should be as high as reasonably feasible.

14.
Biochem Pharmacol ; 222: 116120, 2024 Apr.
Article En | MEDLINE | ID: mdl-38461905

The role of the Immunoglobulin Superfamily (IgSF) as adhesion molecules in orchestrating inflammation is pivotal, yet its specific involvement in gastric cancer (GC) remains unknown. We analyzed IgSF components and discerned conspicuously elevated VCAM1 expression in GC, correlating with a poor prognosis. Remarkably, VCAM1 enhances GC cell proliferation and migration by activating AKT-mTOR signaling. Moreover, lactate in the tumor microenvironment (TME) promotes dynamic lactylation of H3K18 (H3K18la), leading to transcriptional activation of VCAM1 in GC cells. Furthermore, VCAM1 actively mediates intercellular communication in the TME. AKT-mTOR-mediated CXCL1 expression is increased by VCAM1, facilitating the recruitment of human GC-derived mesenchymal stem cells (hGC-MSCs), thereby fostering immunesuppression and accelerating cancer progression. In summary, H3K18 lactylation upregulated VCAM1 transcription, which activated AKT-mTOR signaling, and promoted tumor cell proliferation, EMT Transition and tumor metastasis. VCAM1 upregulated CXCL1 expression by AKT-mTOR pathway, so as to facilitate hGC-MSCs and M2 macrophage recruitment and infiltration. These findings provide novel therapeutic targets for GC.


Stomach Neoplasms , Humans , Stomach Neoplasms/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Cell Movement , Signal Transduction , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Cell Line, Tumor , Cell Proliferation , Gene Expression Regulation, Neoplastic , Epithelial-Mesenchymal Transition , Tumor Microenvironment , Chemokine CXCL1/metabolism
15.
J Orthop Surg Res ; 19(1): 139, 2024 Feb 14.
Article En | MEDLINE | ID: mdl-38351078

BACKGROUND: Insufficient interfragmentary compression force (IFCF) frequently leads to unstable fixation of osteoporotic lateral tibial plateau fractures (OLTPFs). A combined cancellous lag screw (CCLS) enhances IFCF; however, its effect on OLTPF fixation stability remains unclear. Therefore, we investigated the effect of CCLS on OLTPF stability using locking plate fixation (LPF). MATERIALS AND METHODS: Twelve synthetic osteoporotic tibial bones were used to simulate OLTPFs, which were fixed using LPF, LPF-AO cancellous lag screws (LPF-AOCLS), and LPF-CCLS. Subsequently, 10,000 cyclic loadings from 30 to 400 N were performed. The initial axial stiffness (IAS), maximal axial micromotion of the lateral fragment (MAM-LF) measured every 1000 cycles, and failure load after 10,000 cycles were tested. The same three fixations for OLTPF were simulated using finite element analysis (FEA). IFCFs of 0, 225, and 300 N were applied to the LPF, LPF-AOCLS, and LPF-CCLS, respectively, with a 1000-N axial compressive force. The MAM-LF, peak von Mises stress (VMS), peak equivalent elastic strain of the lateral fragment (EES-LF), and nodes of EES-LF > 2% (considered bone destruction) were calculated. RESULTS: Biomechanical tests revealed the LPF-AOCLS and LPF-CCLS groups to be superior to the LPF group in terms of the IAS, MAM-LF, and failure load (all p < 0.05). FEA revealed that the MAM-LF, peak VMS, peak EES-LF, and nodes with EES-LF > 2% in the LPF were higher than those in the LPF-AOCLS and LPF-CCLS. CONCLUSION: IFCF was shown to enhance the stability of OLTPFs using LPF. Considering overscrewing, CCLS is preferably recommended, although there were no significant differences between CCLS and AOCLS.


Fracture Fixation, Internal , Tibial Plateau Fractures , Humans , Bone Screws , Bone Plates , Biomechanical Phenomena
16.
Front Microbiol ; 15: 1361550, 2024.
Article En | MEDLINE | ID: mdl-38419626

Aspergillus fungi are renowned for producing a diverse range of natural products with promising biological activities. These include lovastatin, itaconic acid, terrin, and geodin, known for their cholesterol-regulating, anti-inflammatory, antitumor, and antibiotic properties. In our current study, we isolated three dimeric nitrophenyl trans-epoxyamides (1-3), along with fifteen known compounds (4-18), from the culture of Aspergillus terreus MCCC M28183, a deep-sea-derived fungus. The structures of compounds 1-3 were elucidated using a combination of NMR, MS, NMR calculation, and ECD calculation. Compound 1 exhibited moderate inhibitory activity against human gastric cancer cells MKN28, while compound 7 showed similar activity against MGC803 cells, with both showing IC50 values below 10 µM. Furthermore, compound 16 exhibited moderate potency against Vibrio parahaemolyticus ATCC 17802, with a minimum inhibitory concentration (MIC) value of 7.8 µg/mL. This promising research suggests potential avenues for developing new pharmaceuticals, particularly in targeting specific cancer cell lines and combating bacterial infections, leveraging the unique properties of these Aspergillus-derived compounds.

17.
RSC Med Chem ; 15(2): 506-518, 2024 Feb 21.
Article En | MEDLINE | ID: mdl-38389882

The emergence of multidrug resistance (MDR) in malignant tumors is one of the leading threats encountered currently by many chemotherapeutic agents. A proposed strategy to overcome MDR is to disable the efflux function of P-glycoprotein (P-gp/ABCB1), a critical member of the ABC transporter family that significantly increases the efflux of various anticancer drugs from tumor cells. In this study, structural modification of a third-generation P-gp inhibitor WK-X-34 based on bioisosteric and fragment-growing strategies led to the discovery of the adamantane derivative PID-9, which exhibited the best MDR reversal activity (IC50 = 0.1338 µM, RF = 78.6) in this series, exceeding those of the reported P-gp inhibitors verapamil and WK-X-34. In addition, compared with WK-X-34, PID-9 showed decreased toxicity to cells. Furthermore, the mechanism studies revealed that the reversal activity of adamantane derivatives PID-5, PID-7, and PID-9 stemmed from the inhibition of P-gp efflux. These results indicated that compound PID-9 is the most effective P-gp inhibitor among them with low toxicity and high MDR reversal activity, which provided a fundamental structural reference for further discovery of novel, effective, and non-toxic P-gp inhibitors.

18.
Front Bioeng Biotechnol ; 12: 1325339, 2024.
Article En | MEDLINE | ID: mdl-38375453

Background: The functional movement screen (FMS) has been used to identify deficiencies in neuromuscular capabilities and balance among athletes. However, its effectiveness in detecting movement anomalies within the population afflicted by knee osteoarthritis (KOA), particularly through the application of a family-oriented objective assessment technique, remains unexplored. The objective of this study is to investigate the sensitivity of the FMS and daily activities in identifying kinematic abnormalities in KOA people employing a markerless motion capture system. Methods: A total of 45 persons, presenting various Kellgren-Lawrence grades of KOA, along with 15 healthy controls, completed five tasks of the FMS (deep squat, hurdle step, and in-line lunge) and daily activities (walking and sit-to-stand), which were recorded using the markerless motion capture system. The kinematic waveforms and discrete parameters were subjected to comparative analysis. Results: Notably, the FMS exhibited greater sensitivity compared to daily activities, with knee flexion, trunk sagittal, and trunk frontal angles during in-line lunge emerging as the most responsive indicators. Conclusion: The knee flexion, trunk sagittal, and trunk frontal angles during in-line lunge assessed via the markerless motion capture technique hold promise as potential indicators for the objective assessment of KOA.

19.
Dalton Trans ; 53(9): 4342, 2024 Feb 27.
Article En | MEDLINE | ID: mdl-38353276

Correction for 'The {Cu2I2} cluster bearing metal organic frameworks: crystal structures and fluorescence detecting performances towards cysteine and explosive molecules' by Jiang Jiang et al., Dalton Trans., 2024, 53, 706-714, https://doi.org/10.1039/d3dt03363e.

20.
Biomark Res ; 12(1): 2, 2024 Jan 07.
Article En | MEDLINE | ID: mdl-38185685

The cGAS-STING signaling pathway has emerged as a critical mediator of innate immune responses, playing a crucial role in improving antitumor immunity through immune effector responses. Targeting the cGAS-STING pathway holds promise for overcoming immunosuppressive tumor microenvironments (TME) and promoting effective tumor elimination. However, systemic administration of current STING agonists faces challenges related to low bioavailability and potential adverse effects, thus limiting their clinical applicability. Recently, nanotechnology-based strategies have been developed to modulate TMEs for robust immunotherapeutic responses. The encapsulation and delivery of STING agonists within nanoparticles (STING-NPs) present an attractive avenue for antitumor immunotherapy. This review explores a range of nanoparticles designed to encapsulate STING agonists, highlighting their benefits, including favorable biocompatibility, improved tumor penetration, and efficient intracellular delivery of STING agonists. The review also summarizes the immunomodulatory impacts of STING-NPs on the TME, including enhanced secretion of pro-inflammatory cytokines and chemokines, dendritic cell activation, cytotoxic T cell priming, macrophage re-education, and vasculature normalization. Furthermore, the review offers insights into co-delivered nanoplatforms involving STING agonists alongside antitumor agents such as chemotherapeutic compounds, immune checkpoint inhibitors, antigen peptides, and other immune adjuvants. These platforms demonstrate remarkable versatility in inducing immunogenic responses within the TME, ultimately amplifying the potential for antitumor immunotherapy.

...