Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 75
1.
Dalton Trans ; 53(17): 7315-7320, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38590209

In recent years, organic-inorganic hybrid materials have demonstrated exceptional performance in nonlinear optics, attracting widespread attention. However, there are relatively few examples of coordination compounds synthesized with Cu as the metal center that exhibit excellent nonlinear optical properties. In this study, we successfully synthesized a pair of enantiomers named R/S-Cu2I2 by reacting chiral ligands with CuI. The crystal structure reveals a one-dimensional copper-iodide chain structure built by Cu2I2 clusters, and its ordered arrangement in space provides not only a strong second harmonic generation (SHG) signal (1.24 × KDP) but also a large birefringence (0.15@1064 nm). Under excitation at 395 nm, the crystals exhibit red fluorescence peaked at 675 nm. The CD spectra of R/S-Cu2I2 show a distinct mirror-symmetric Cotton effect, and their CPL signals are corresponding and opposite in the emission range, with a maximum glum of approximately ±2.5 × 10-3. Theoretical calculations using density functional theory were also carried out to enhance our understanding of the correlation between their structures and optical properties.

2.
ACS Appl Mater Interfaces ; 16(17): 22102-22112, 2024 May 01.
Article En | MEDLINE | ID: mdl-38647245

Aqueous zinc-ion hybrid supercapacitors (ZHSCs) have attracted considerable attention because they are inexpensive and safe. However, the inadequate energy densities, power densities, and cycling performance of current ZHSC energy-storage devices are impediments that need to be overcome to enable the further development and commercialization of this technology. To address these issues, in this study, we prepared carbon-based ZHSCs using a series of porous carbon materials derived from Sanhua liquor lees (SLPCs). Among them, the best performance was observed for SLPC-A13, which exhibited excellent properties and a high-surface-area structure (2667 m2 g-1) with abundant micropores. The Zn//SLPC-A13 device was assembled by using 2 mol L-1 ZnSO4, SLPC-A13, and Zn foil as the electrolyte, cathode, and anode, respectively. The Zn//SLPC-A13 device delivered an ultrahigh energy density of 137 Wh kg-1 at a power density of 462 W kg-1. Remarkably, Zn//SLPC-A13 retained 100% of its specific capacitance after 120,000 cycles of long-term charge/discharge testing, with 62% retained after 250,000 cycles. This outstanding performance is primarily attributed to the SLPC-A13 carbon material, which promotes the rapid adsorption and desorption of ions, and the charge-discharge process, which roughens the Zn anode in a manner that improves reversible Zn-ion plating/stripping efficiency. This study provides ideas for the preparation of ZHSC cathode materials.

3.
Micromachines (Basel) ; 15(3)2024 Feb 28.
Article En | MEDLINE | ID: mdl-38542580

Flexible devices have extensive applications in areas including wearable sensors, healthcare, smart packaging, energy, automotive and aerospace sectors, and other related fields. Droplet printing technology can be utilized to print flexible electronic components with micro/nanostructures on various scales, exhibiting good compatibility and wide material applicability for device production. This paper provides a comprehensive review of the current research status of droplet printing technologies and their applications across various domains, aiming to offer a valuable reference for researchers in related areas.

4.
Rev Sci Instrum ; 95(3)2024 Mar 01.
Article En | MEDLINE | ID: mdl-38488709

The accurate and rapid detection and recognition of jet features are key to dynamic monitoring and online control of the electrospinning process. In this study, a real-time recognition system based on OpenCV was introduced into a coaxial laser-assisted electrospinning system to solve the difficulties of accurate jet recognition and to promote an image processing algorithm response. The jet images with laser assistance were more clearly visible than those without laser assistance, and a significant contrast in grayscale levels existed in the jet image to help distinguish jet features. Subsequently, separate algorithms were designed for the jet visible length calculation, and the recognized visible length of the jet and algorithm running speed were compared. The average visible length of the jet with laser assistance was 11.49 mm, which increased by 1.59 mm compared to that without laser assistance. In addition, the running time of the algorithm with laser assistance was 24.89 ms, reduced by 14.84 ms compared to that without laser assistance, indicating the effectiveness of laser assistance to promote the accuracy and running speed of the jet image recognition process. Additionally, real-time detection of the jet angles was achieved to identify instances of excessive deflection during the electrospinning process. Overall, this study has significant potential to promote the dynamic monitoring of an electrospinning jet.

5.
J Ethnopharmacol ; 326: 117903, 2024 May 23.
Article En | MEDLINE | ID: mdl-38342154

ETHNOPHARMACOLOGICAL RELEVANCE: Reflux esophagitis (RE) is a common chronic inflammatory disease of the esophageal mucosa with a high prevalence and recurrence rate, for which a satisfactory therapeutic strategy is still lacking. Chinese medicine has its characteristics and advantages in treating RE, and the clinical application of Xuanfu Daizhe Tang (XDT) in treating RE has achieved sound therapeutic effects. However, there needs to be more research on its mechanism of action. AIM OF THE STUDY: The present work aimed to investigate the mechanism of XDT action in RE through the Signal Transducer and Activator of Transcription 1 (STAT1)/Triggering Receptor Expressed on Myeloid cells-1 (TREM-1) pathway. MATERIALS AND METHODS: The main active components of XDT were analyzed by ultra-performance liquid chromatography-mass spectrometer (UPLC-MS). The effect of XDT on RE was evaluated in a rat model of RE induced by "Cardioplasty + pyloric ligation + Roux-en-Y esophagojejunostomy". Each administration group was treated by gavage. The degree of damage to the esophageal mucosa was evaluated by visual observation, and the Potential of Hydrogen (PH) method and Hematoxylin-eosin staining (HE) staining were performed. Serum levels of Interleukin-1ß (IL-1ß), Interleukin-6 (IL-6), Tumor Necrosis Factor alpha (TNF-α), and Inducible Nitric Oxide Synthase (iNOS) were measured by ELISA. Quantitative Real-time PCR (qPCR), Western Blot (WB), and Immunofluorescence (IF) methods were used to detect Claudin-4, Claudin-5, TREM-1, and p-STAT1 in esophageal tissues for studying the mechanism of action and signaling pathway of XDT. Immunohistochemistry (IHC) analysis was used to detect the expression of TREM-1 and CD68 in esophageal tissues. Flow Cytometry (FC) was used to detect the polarization of macrophages in the blood. After conducting preliminary experiments to verify our hypothesis, we performed molecular docking between the active component of XDT and STAT1 derived from rats and parallel experiments with STAT1 inhibitor. The selective increaser of STAT1 transcription (2-NP) group was used to validate the mechanism by which XDT acts. RESULTS: XDT alleviated esophageal injury and attenuated histopathological changes in RE rats. XDT also inhibited the inflammatory response and decreased serum IL-1ß, IL-6, TNF-α, and iNOS levels in RE rats. qPCR and WB results revealed that XDT inhibited the expression of Claudin-4, Claudin-5, TREM-1, and STAT1 in the esophageal mucosa of RE rats. IHC and FC results showed that XDT reduced TREM-1 levels in esophageal tissues and polarized macrophages toward M2. The molecular docking results showed that rat-derived STAT1 can strongly bind to Isochronogenic acid A in XDT. The parallel experimental results of STAT1 inhibitor showed that XDT has anti-inflammatory effects similar to STAT1 inhibitors. The 2-NP group confirmed that XDT exerts its therapeutic effect on reflux esophagitis through the STAT1/TREM-1 pathway, with STAT1 as the upstream protein. CONCLUSIONS: This study suggests that XDT may treat reflux esophagitis by modulating the STAT1/TREM-1 pathway.


Esophagitis, Peptic , Rats , Animals , Esophagitis, Peptic/drug therapy , Esophagitis, Peptic/metabolism , Esophagitis, Peptic/pathology , Triggering Receptor Expressed on Myeloid Cells-1/metabolism , Interleukin-6/metabolism , Tumor Necrosis Factor-alpha , Claudin-4 , Claudin-5 , Chromatography, Liquid , Molecular Docking Simulation , Tandem Mass Spectrometry
6.
Environ Pollut ; 345: 123556, 2024 Mar 15.
Article En | MEDLINE | ID: mdl-38346635

The direct thermal polymerization techniques were applied to prepare the graphene oxide (GO)-graphitic carbon nitride (gCN) hybrid structure. The prepared hybrid heterojunction GO-gCN nanosheets were utilized as a photocatalyst to remove model pollutants methylene blue (MB) dye. The basic physio-chemical properties of GO-gCN layered materials have been analyzed by various characterization techniques. In addition, the proposed materials have a higher photocatalytic ability toward the degradation of aqueous solution of MB dye under visible light irradiation within a short treatment time. This is because it's the synergistic effects of GO-gCN layer-by-layer structures produced by π─π stacking with charge-transfer interactions. The gCN with GO composite can able to enhance the charge transfer and light-harvesting properties. Under the influence of photocatalyst, the surface of Graphene oxide undergoes the separation and combination of carbonyl radicals, hydroxyl radicals, epoxy radicals, and electron-hole pairs. This enhances the absorption of visible light and improves the degradation of MB, when GO is incorporated into gCN. The removal efficiency of MB reached up to 82.311% within the short treatment time.


Graphite , Methylene Blue , Nitrogen Compounds , Electrons
7.
Int J Biol Macromol ; 254(Pt 2): 127862, 2024 Jan.
Article En | MEDLINE | ID: mdl-37939775

Functionalization of bio-based nanofibers is the development tendency of high-performance air filter. However, the conventional structural optimization strategy based on high solution conductivity greatly hinders the development of fully bio-based air filter, and not conducive to sustainable development. This work fabricated fully bio-based nanofibrous membrane with formaldehyde-adsorbable and antibacterial capabilities by electrospinning low-conductivity solution for high-performance air filtration and applied to lightweight mask. The "water-like" ethyl cellulose (EC) was selected as the base polymer to "nourish" functional materials of gelatin (GE), ß-cyclodextrin (ßCD), and curcumin (Cur), thus forming a solution system with high binding energy differences and electrospinning into ultrafine bimodal nanofibers. The filtration efficiency for 0.3 µm NaCl particles, pressure drop, and quality factor were 99.25 %, 53 Pa, and 0.092 Pa-1, respectively; the bacteriostatic rates against Escherichia coli and Staphylococcus aureus were 99.9 % and 99.4 %, respectively; the formaldehyde adsorption capacity was 442 µg/g. This is the first report on antibacterial and formaldehyde-adsorbable high-performance air filter entirely made from bio-based materials. This simple strategy will greatly broaden the selection of materials for preparing high-performance multifunctional air filter, and promote the development of bio-based air filter.


Curcumin , Nanofibers , Nanofibers/chemistry , Curcumin/pharmacology , Gelatin , Filtration , Anti-Bacterial Agents/pharmacology
8.
J Phys Chem Lett ; 14(50): 11513-11521, 2023 Dec 21.
Article En | MEDLINE | ID: mdl-38090810

In this work, we theoretically investigate the feasibility of biphenylite, the van der Waals layered bulk structure from experimental biphenylene network monolayers, as an anode material for alkali metal ions. The results indicate that the theoretical properties of Li, Na, and K in biphenylite are generally beyond those in graphite. Li-biphenylite exhibits a high specific capacity of 744 mAh·g-1, with a corresponding voltage range of 0.90-0.36 V, low diffusion barrier (<0.30 eV), and small volume change (∼9.9%), far exceeding those of Li-graphite. Moreover, a novel self-enhanced storage mechanism is observed and unveiled, in which the heavy intercalation of Li atoms (i.e., electron doping) induces puckered distortion of the nonhoneycomb carbon frameworks to enhance the intercalation ability and capacity of Li ion via a chemical activation of carbon frameworks. Possessing excellent anode performance beyond graphite, biphenylite is a promising "all-around" anode material candidate for alkali metal ion batteries, especially for lithium ion batteries.

9.
Adv Sci (Weinh) ; 10(36): e2303913, 2023 Dec.
Article En | MEDLINE | ID: mdl-37949673

Extranodal natural killer/T-cell lymphoma (NKTCL) is an aggressive type of lymphoma associated with Epstein-Barr virus (EBV) and characterized by heterogeneous tumor behaviors. To better understand the origins of the heterogeneity, this study utilizes single-cell RNA sequencing (scRNA-seq) analysis to profile the tumor microenvironment (TME) of NKTCL at the single-cell level. Together with in vitro and in vivo models, the study identifies a subset of LMP1+ malignant NK cells contributing to the tumorigenesis and development of heterogeneous malignant cells in NKTCL. Furthermore, malignant NK cells interact with various immunocytes via chemokines and their receptors, secrete substantial DPP4 that impairs the chemotaxis of immunocytes and regulates their infiltration. They also exhibit an immunosuppressive effect on T cells, which is further boosted by LMP1. Moreover, high transcription of EBV-encoded genes and low infiltration of tumor-associated macrophages (TAMs) are favorable prognostic indicators for NKTCL in multiple patient cohorts. This study for the first time deciphers the heterogeneous composition of NKTCL TME at single-cell resolution, highlighting the crucial role of malignant NK cells with EBV-encoded LMP1 in reshaping the cellular landscape and fostering an immunosuppressive microenvironment. These findings provide insights into understanding the pathogenic mechanisms of NKTCL and developing novel therapeutic strategies against NKTCL.


Epstein-Barr Virus Infections , Lymphoma, Extranodal NK-T-Cell , Humans , Herpesvirus 4, Human/genetics , Epstein-Barr Virus Infections/complications , Epstein-Barr Virus Infections/pathology , Lymphoma, Extranodal NK-T-Cell/genetics , Lymphoma, Extranodal NK-T-Cell/pathology , Prognosis , Single-Cell Analysis , Tumor Microenvironment
10.
J Phys Chem Lett ; 14(43): 9655-9664, 2023 Nov 02.
Article En | MEDLINE | ID: mdl-37870573

The development of new carbon materials with novel properties and excellent applications is essential and urgent in many fields, such as potassium-ion batteries (PIBs). In this study, a family of 30 two-dimensional biphenylene carbon allotropes (2D-BCAs) have been systematically extended in theory. The energies of these allotropes are slightly higher than that of graphene, which can be well described by a quantitative energy equation. The 2D-BCAs show high synthesizability consistent with the experimental biphenylene network via "HF-zipping" reactions. The 2D-BCAs are metallic or semimetallic. Six representative 2D-BCAs exhibit good lattice dynamical and thermal stability, excellent anisotropic mechanical properties, and ORR catalytic activity. Moreover, the selected 2D-BCAs demonstrate ultrahigh theoretical potassium-storage capacities of 1116-1489 mAh·g-1, low migration barriers of 0.03-0.22 eV, and low open-circuit voltages of 1.10-0.02 V. The remarkable properties render 2D-BCAs as promising anode materials in PIBs, electrocatalysts, and conductors in electronics and iontronics.

11.
ACS Appl Mater Interfaces ; 15(37): 44259-44267, 2023 Sep 20.
Article En | MEDLINE | ID: mdl-37672751

Organic flame-retardant-loaded battery separator offers a new opportunity for battery safety. However, its poor thermal stability still poses serious safety issues. Inspired by Tai Chi, an "internal-cultivating and external-practicing" core-shell nanofibrous membrane was prepared by coaxial electrospinning, wherein the shell layer was a mixture of polyvinylidene fluoride, silicon dioxide (SiO2), and graphene oxide (GO) and the core layer contained triphenyl phosphate (TPP). SiO2 and GO enhanced the thermal stability and electrochemical performance. The encapsulated TPP prevented heat transfer and the degradation of electrochemical performance caused by its direct dissolution. This separator exhibited outstanding thermal stability and flame retardancy: it did not burn and remained relatively intact (91.2%) in an open flame for 15 s. The battery assembled with a composite separator showed excellent performance: the initial capacity reached 164 mA h/g and maintained 95% after 100 charge-discharge cycles. This novel strategy endows high-performance lithium batteries with relatively higher safety.

12.
Nanoscale ; 15(36): 14912-14922, 2023 Sep 21.
Article En | MEDLINE | ID: mdl-37655453

The search for new forms of the traditional bulk materials to enrich their interactions and properties is an attractive subject in two-dimensional (2D) materials. In this work, novel tetra-hexa-mixed coordinated 2D silicon nitrides (Si3N4) and their analogues are systematically investigated via density functional theory. The results show the global minimum 2D structure, Si3N4 (T-aa), is a highly chemically and thermally stable superhard semiconductor with a wide indirect bandgap (about 6.0 eV), which is widely adjustable under both biaxial strain and vertical electric field. It also possesses anisotropic high carrier mobility, up to 5490 cm2 V-1 s-1 at room temperature. Besides, its nitride analogues of group IVA (Si, Ge, Sn, and Pb) exhibit diverse electronic structures with regular bandgap distribution. Remarkably, some nitride analogues display linearly increasing robust magnetism with hole doping. The theoretical Curie temperatures of Si3N4 and Sn3N4 with hole doping (1h+ per unit cell) are 298 and 180 K, respectively. The Si3N4 (T-aa) and its analogues have a variety of excellent properties to be potentially applied in various fields, e.g., semiconductor electronics, spintronics, high-temperature structural materials, and superhard materials.

13.
Clin Exp Med ; 23(8): 5051-5062, 2023 Dec.
Article En | MEDLINE | ID: mdl-37555912

Cancer survivors have an increased risk of developing subsequent primary tumors. However, the characteristics of first primary cancers (FPCs) with various types of second primary cancers (SPCs) are poorly understood, which hinders screening strategies. We analyzed data from 1,893,258 patients from the Surveillance, Epidemiology, and End Results (SEER) database to characterize and classify of FPC patients with subsequent SPCs at the pan-cancer level. In total, 3% of patients had SPC, with varied incidence rates observed depending on the types of FPC. Their onset patterns of SPC and diversity of SPC varied. Based on the diversity of the high-incidence sites of SPC, we classified FPCs into two categories: FPCs that require whole-body screening and those that need screening of particular body parts. Moreover, according to the different timing of high incidence of SPCs, our system classifies FPCs into two subtypes: FPCs that require long-term monitoring for the occurrence of SPCs and those that require screening at specific time points for SPCs. Furthermore, we identified 11 anatomical sites where over half of FPC types are prone to SPC occurrence at these locations. The risk factors for SPC occurrence in different FPC types and prognostic factors were also elucidated. Overall, we characterize and classify of FPC patients with subsequent SPCs at the pan-cancer level, which can guide the development of distinct screening strategies for each FPC type.


Neoplasms, Second Primary , Neoplasms , Humans , Neoplasms, Second Primary/diagnosis , Neoplasms, Second Primary/epidemiology , Cohort Studies , Risk Factors , Neoplasms/diagnosis , Neoplasms/epidemiology , Incidence
14.
Cell Death Dis ; 14(8): 511, 2023 08 09.
Article En | MEDLINE | ID: mdl-37558679

Dysregulation of serine/arginine splicing factors (SRSFs) and abnormal alternative splicing (AS) have been widely implicated in various cancers but scarcely investigated in nasopharyngeal carcinoma (NPC). Here we examine the expression of 12 classical SRSFs between 87 NPC and 10 control samples, revealing a significant upregulation of SRSF3 and its association with worse prognosis in NPC. Functional assays demonstrate that SRSF3 exerts an oncogenic function in NPC progression. Transcriptome analysis reveals 1,934 SRSF3-regulated AS events in genes related to cell cycle and mRNA metabolism. Among these events, we verify the generation of a long isoform of AMOTL1 (AMOTL1-L) through a direct bond of the SRSF3 RRM domain with the exon 12 of AMOTL1 to promote exon inclusion. Functional studies also reveal that AMOTL1-L promotes the proliferation and migration of NPC cells, while AMOTL1-S does not. Furthermore, overexpression of AMOTL1-L, but not -S, significantly rescues the inhibitory effects of SRSF3 knockdown. Additionally, compared with AMOTL1-S, AMOTL1-L has a localization preference in the intracellular than the cell membrane, leading to a more robust interaction with YAP1 to promote nucleus translocation. Our findings identify SRSF3/AMOTL1 as a novel alternative splicing axis with pivotal roles in NPC development, which could serve as promising prognostic biomarkers and therapeutic targets for NPC.


Nasopharyngeal Neoplasms , RNA Splicing , Humans , Nasopharyngeal Carcinoma/genetics , Cell Transformation, Neoplastic/genetics , Alternative Splicing/genetics , Nasopharyngeal Neoplasms/genetics , Serine-Arginine Splicing Factors/genetics , Serine-Arginine Splicing Factors/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Angiomotins
15.
Front Oncol ; 13: 1177225, 2023.
Article En | MEDLINE | ID: mdl-37427110

Background: Deep learning technology has been widely applied to medical image analysis. But due to the limitations of its own imaging principle, ultrasound image has the disadvantages of low resolution and high Speckle Noise density, which not only hinder the diagnosis of patients' conditions but also affect the extraction of ultrasound image features by computer technology. Objective: In this study, we investigate the robustness of deep convolutional neural network (CNN) for classification, segmentation, and target detection of breast ultrasound image through random Salt & Pepper Noise and Gaussian Noise. Methods: We trained and validated 9 CNN architectures in 8617 breast ultrasound images, but tested the models with noisy test set. Then, we trained and validated 9 CNN architectures with different levels of noise in these breast ultrasound images, and tested the models with noisy test set. Diseases of each breast ultrasound image in our dataset were annotated and voted by three sonographers based on their malignancy suspiciousness. we use evaluation indexes to evaluate the robustness of the neural network algorithm respectively. Results: There is a moderate to high impact (The accuracy of the model decreased by about 5%-40%) on model accuracy when Salt and Pepper Noise, Speckle Noise, or Gaussian Noise is introduced to the images respectively. Consequently, DenseNet, UNet++ and Yolov5 were selected as the most robust model based on the selected index. When any two of these three kinds of noise are introduced into the image at the same time, the accuracy of the model will be greatly affected. Conclusions: Our experimental results reveal new insights: The variation trend of accuracy with the noise level in Each network used for classification tasks and object detection tasks has some unique characteristics. This finding provides us with a method to reveal the black-box architecture of computer-aided diagnosis (CAD) systems. On the other hand, the purpose of this study is to explore the impact of adding noise directly to the image on the performance of neural networks, which is different from the existing articles on robustness in the field of medical image processing. Consequently, it provides a new way to evaluate the robustness of CAD systems in the future.

16.
PLoS One ; 18(7): e0287205, 2023.
Article En | MEDLINE | ID: mdl-37494380

Rodents have the capacity for spontaneous bladder regeneration and bladder smooth muscle cell (BSMC) migration following a subtotal cystectomy (STC). YAP/WWTR1 and BDNF (Brain-derived neurotrophic factor) play crucial roles in development and regeneration. During partial bladder outlet obstruction (PBO), excessive YAP/WWTR1 signaling and BDNF expression increases BSMC hypertrophy and dysfunction. YAP/WWTR1 and expression of BDNF and CYR61 were examined in models of regeneration and wound repair. Live cell microscopy was utilized in an ex vivo model of STC to visualize cell movement and division. In Sprague-Dawley female rats, STC was performed by resection of the bladder dome sparing the trigone, followed by closure of the bladder. Smooth muscle migration and downstream effects on signaling and expression were also examined after scratch wound of BSMC with inhibitors of YAP and BDNF signaling. Sham, PBO and incision (cystotomy) were comparators for the STC model. Scratch wound in vitro increased SMC migration and expression of BDNF, CTGF and CYR61 in a YAP/WWTR1-dependent manner. Inhibition of YAP/WWTR1 and BDNF signaling reduced scratch-induced migration. BDNF and CYR61 expression was elevated during STC and PBO. STC induces discrete genes associated with endogenous de novo cell regeneration downstream of YAP/WWTR1 activation.


Cystectomy , Urinary Bladder , Rats , Animals , Female , Urinary Bladder/metabolism , Rats, Sprague-Dawley , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Muscle, Smooth/metabolism , Regeneration/physiology , Transcriptional Coactivator with PDZ-Binding Motif Proteins
17.
Front Psychiatry ; 14: 1128808, 2023.
Article En | MEDLINE | ID: mdl-37065900

Background: Although the specific role of the uncinate fasciculus (UF) in emotional processing in patients with obsessive-compulsive disorder (OCD) has been investigated, the exact focal abnormalities in the UF have not been identified. The aim of the current study was to identify focal abnormalities in the white matter (WM) microstructure of the UF and to determine the associations between clinical features and structural neural substrates. Methods: In total, 71 drug-naïve patients with OCD and 81 age- and sex-matched healthy controls (HCs) were included. Automated fiber quantification (AFQ), a tract-based quantitative approach, was adopted to measure alterations in diffusion parameters, including fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD) and axial diffusivity (AD), along the trajectory of the UF. Additionally, we utilized partial correlation analyses to explore the relationship between the altered diffusion parameters and clinical characteristics. Results: OCD patients showed significantly higher FA and lower RD at the level of the temporal and insular portions in the left UF than HCs. In the insular segments of the left UF, increased FA was positively correlated with the Hamilton Anxiety Scale (HAMA) score, while decreased RD was negatively correlated with the duration of illness. Conclusion: We observed specific focal abnormalities in the left UF in adult patients with OCD. Correlations with measures of anxiety and duration of illness underscore the functional importance of the insular portion of left UF disturbance in OCD patients.

18.
Sci Rep ; 13(1): 3790, 2023 Mar 07.
Article En | MEDLINE | ID: mdl-36882512

Stability control of electrohydrodynamic (EHD) printing technology is urgent needed for efficient fabrication of flexible electronics. In this study, a new fast on-off controlling technology for micro droplets of EHD is proposed by applying an AC induced voltage. The suspending droplet interface is broken through quickly, and the impulse current can be significantly reduced from 527.2 to 50.14 nA, which greatly reduces its negative impact on jet stability. What's more, time interval of jet generation can be shortened by a factor of three, while not only significantly improving the uniformity of the droplets, but effectively reducing the droplet size from 195 to 104 µm. Moreover, the controllable and mass formation of micro droplets are realized, but also the structure of each droplet is able to be controlled independently, which promoted the development of EHD printing technology in more fields.

20.
J Clin Med ; 12(5)2023 Feb 27.
Article En | MEDLINE | ID: mdl-36902676

PURPOSE: To build a new staging system and new prognostic models for MPTB. METHODS: We performed a comprehensive analysis of the data from the SEER database. RESULTS: We discussed the characteristics of MPTB by comparing 1085 MPTB cases with 382,718 invasive ductal carcinoma cases. We established a new stage- and age-stratification system for MPTB patients. Furthermore, we built two prognostic models for MPTB patients. The validity of these models was confirmed through multifaceted and multidata verification. CONCLUSIONS: Our study provided a staging system and prognostic models for MPTB patients, which can not only help to predict patient outcomes, but also enhance the understanding of the prognostic factors associated with MPTB.

...