Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 26
1.
J Extracell Vesicles ; 13(4): e12428, 2024 Apr.
Article En | MEDLINE | ID: mdl-38581089

It is well known that DNA damage can cause apoptosis. However, whether apoptosis and its metabolites contribute to DNA repair is largely unknown. In this study, we found that apoptosis-deficient Fasmut and Bim- /- mice show significantly elevated DNA damage and premature cellular senescence, along with a significantly reduced number of 16,000 g apoptotic vesicles (apoVs). Intravenous infusion of mesenchymal stromal cell (MSC)-derived 16,000 g apoVs rescued the DNA damage and premature senescence in Fasmut and Bim-/- mice. Moreover, a sublethal dose of radiation exposure caused more severe DNA damage, reduced survival rate, and loss of body weight in Fasmut mice than in wild-type mice, which can be recovered by the infusion of MSC-apoVs. Mechanistically, we showed that apoptosis can assemble multiple nuclear DNA repair enzymes, such as the full-length PARP1, into 16,000 g apoVs. These DNA repair components are directly transferred by 16,000 g apoVs to recipient cells, leading to the rescue of DNA damage and elimination of senescent cells. Finally, we showed that embryonic stem cell-derived 16,000 g apoVs have superior DNA repair capacity due to containing a high level of nuclear DNA repair enzymes to rescue lethal dose-irradiated mice. This study uncovers a previously unknown role of 16,000 g apoVs in safeguarding tissues from DNA damage and demonstrates a strategy for using stem cell-derived apoVs to ameliorate irradiation-induced DNA damage.


Extracellular Vesicles , Animals , Mice , Cellular Senescence , DNA Damage , DNA Repair , DNA Repair Enzymes
2.
Heliyon ; 10(5): e27493, 2024 Mar 15.
Article En | MEDLINE | ID: mdl-38500678

In this paper, the concept of a dynamic nonlinear simplified neutrosophic set (DNSNS) is proposed for describing the real-time changing expert preference information. Furthermore, the DNSNS aggregation model and decision algorithm are provided to solve the actual multiple-attribute group decision making (MAGDM) problems. The basic notions, the similarity measure, the entropy measure, and the index of distance of DNSNS are presented first. Secondly, the univariate time series of DNSNS are projected into dynamic nonlinear simplified neutrosophic curves in three-dimensional space. The areas of the surface enclosed by the curves represent the variance among the DNSNSs. Thus, the DNSNS aggregation model is established correctly without preprocessing the original data. Afterward, the aggregation algorithm extended from the plant growth simulation algorithm (PGSA) is proposed for calculating the optimal aggregation preference curve and constructing the collective matrix. Additionally, a novel corresponding decision algorithm based on TOPSIS and projection theory is proposed for obtaining the overall ranking of alternatives in the actual MAGDM problem. Finally, a typical example is presented to illustrate the feasibility and effectiveness of the proposed model and algorithm.

3.
Nat Cell Biol ; 26(3): 464-477, 2024 Mar.
Article En | MEDLINE | ID: mdl-38321204

Leukaemia stem cells (LSCs) in acute myeloid leukaemia present a considerable treatment challenge due to their resistance to chemotherapy and immunosurveillance. The connection between these properties in LSCs remains poorly understood. Here we demonstrate that inhibition of tyrosine phosphatase SHP-1 in LSCs increases their glycolysis and oxidative phosphorylation, enhancing their sensitivity to chemotherapy and vulnerability to immunosurveillance. Mechanistically, SHP-1 inhibition leads to the upregulation of phosphofructokinase platelet (PFKP) through the AKT-ß-catenin pathway. The increase in PFKP elevates energy metabolic activities and, as a consequence, enhances the sensitivity of LSCs to chemotherapeutic agents. Moreover, the upregulation of PFKP promotes MYC degradation and, consequently, reduces the immune evasion abilities of LSCs. Overall, our study demonstrates that targeting SHP-1 disrupts the metabolic balance in LSCs, thereby increasing their vulnerability to chemotherapy and immunosurveillance. This approach offers a promising strategy to overcome LSC resistance in acute myeloid leukaemia.


Leukemia, Myeloid, Acute , Metabolic Reprogramming , Humans , Monitoring, Immunologic , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/metabolism , Stem Cells , Neoplastic Stem Cells/metabolism
4.
ACS Nano ; 17(4): 3334-3345, 2023 02 28.
Article En | MEDLINE | ID: mdl-36752654

Ferroptosis is an alternative strategy to overcome chemoresistance, but effective therapeutic approaches to induce ferroptosis for acute myeloid leukemia (AML) treatment are limited. Here, we developed glutathione (GSH)-responsive cysteine polymer-based ferroptosis-inducing nanomedicine (GCFN) as an efficient ferroptosis inducer and chemotherapeutic drug nanocarrier for AML treatment. GCFN depleted intracellular GSH and inhibited glutathione peroxidase 4, a GSH-dependent hydroperoxidase, to cause lipid peroxidation and ferroptosis in AML cells. Furthermore, GCFN-loaded paclitaxel (PTX@GCFN) targeted AML cells and spared normal hematopoietic cells to limit the myeloablation side effects caused by paclitaxel. PTX@GCFN treatment extended the survival of AML mice by specifically releasing paclitaxel and simultaneously inducing ferroptosis in AML cells with restricted myeloablation and tissue damage side effects. Overall, the dual-functional GCFN acts as an effective ferroptosis inducer and a chemotherapeutic drug carrier for AML treatment.


Ferroptosis , Leukemia, Myeloid, Acute , Animals , Mice , Cysteine , Polymers/pharmacology , Leukemia, Myeloid, Acute/drug therapy , Paclitaxel/pharmacology , Paclitaxel/therapeutic use , Oxidation-Reduction
5.
Nat Cell Biol ; 25(1): 170-182, 2023 Jan.
Article En | MEDLINE | ID: mdl-36624186

T cell acute lymphoblastic leukaemia (T-ALL) is an aggressive malignancy with poor prognosis, but a decisive marker and effective treatment for leukaemia stem cells (LSCs) remain unclear. Here, using lineage tracing, limiting dilution assays and in vivo live imaging approaches, we identify rare inhibitory receptor programmed cell death 1 (PD-1)-expressing cells that reside at the apex of leukaemia hierarchy for initiation and relapse in T-ALL. Ablation of PD-1-expressing cells, deletion of PD-1 in T-ALL cells or blockade of PD-1 or PD-1 ligand 1 significantly eradicated LSCs and suppressed disease progression. Combination therapy using PD-1 blockade and chemotherapy substantially extended the survival of mice engrafted with mouse or human T-ALL cells. Mechanistically, PD-1+ LSCs had high NOTCH1-MYC activity for disease initiation. Furthermore, PD-1 signalling maintained quiescence and protected LSCs against T cell receptor-signal-induced apoptosis. Overall, our data highlight the hierarchy of leukaemia by identifying PD-1+ LSCs and provide a therapeutic approach for the elimination of LSCs through PD-1 blockade in T-ALL.


Leukemia, Myeloid, Acute , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Humans , Mice , Animals , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Programmed Cell Death 1 Receptor/genetics , Neoplasm Recurrence, Local , Leukemia, Myeloid, Acute/metabolism , Receptors, Antigen, T-Cell , T-Lymphocytes/metabolism , Apoptosis , Cell Death , Stem Cells/metabolism
6.
Microbiol Res ; 266: 127219, 2023 Jan.
Article En | MEDLINE | ID: mdl-36279646

The necrotrophic phytopathogen Rhizoctonia solani (R. solani) causes disease in many plant species. This fungal genome encodes abundant small cysteine-rich (SCR)-secreted proteins in R. solani that may induce pathogenesis. To test their molecular functions, we introduced 10 SCR-secreted protein genes from R. solani into tobacco leaves via agroinfiltration. Consequently, we identified RsMf8HN, a novel SCR protein that triggers cell death and an oxidative burst in tobacco. RsMf8HN comprises 182 amino acids (aa), including a signal peptide (SP) of 17aa, and the protein has unique features: it is orthologous to an allergen protein Mal f 8 occurring in Malassezia species, and possesses a high glycine and serine content. RsMf8HN is coded in a genomic location along with its paralogues and a few other effector candidates. The elicitation of plant immunity by RsMf8HN was dependent on HSP90 and SGT1. RsMf8HN was translocated to multiple locations within the host cells: i.e., nuclei, chloroplasts, and plasma membranes. We confirmed the occurrence of in vivo cross-interactions of RsMf8HN with a rice molecule, the heavy metal-associated isoprenylated plant protein OsHIPP28, which is a protein related to the disease susceptibility factor Pi21. In summary, our results suggest that RsMf8HN is a potential effector that enables necrotrophic phytopathogens to interfere with host plant immunity.


Oryza , Oryza/microbiology , Plant Diseases/microbiology , Rhizoctonia/genetics , Plants , Plant Immunity/genetics
7.
Cell Stem Cell ; 29(7): 1119-1134.e7, 2022 07 07.
Article En | MEDLINE | ID: mdl-35803229

Hematopoietic stem cells (HSCs) adapt their metabolism to maintenance and proliferation; however, the mechanism remains incompletely understood. Here, we demonstrated that homeostatic HSCs exhibited high amino acid (AA) catabolism to reduce cellular AA levels, which activated the GCN2-eIF2α axis, a protein synthesis inhibitory checkpoint to restrain protein synthesis for maintenance. Furthermore, upon proliferation conditions, HSCs enhanced mitochondrial oxidative phosphorylation (OXPHOS) for higher energy production but decreased AA catabolism to accumulate cellular AAs, which inactivated the GCN2-eIF2α axis to increase protein synthesis and coupled with proteotoxic stress. Importantly, GCN2 deletion impaired HSC function in repopulation and regeneration. Mechanistically, GCN2 maintained proteostasis and inhibited Src-mediated AKT activation to repress mitochondrial OXPHOS in HSCs. Moreover, the glycolytic metabolite, NAD+ precursor nicotinamide riboside (NR), accelerated AA catabolism to activate GCN2 and sustain the long-term function of HSCs. Overall, our study uncovered direct links between metabolic alterations and translation control in HSCs during homeostasis and proliferation.


Eukaryotic Initiation Factor-2 , Proteostasis , Amino Acids/metabolism , Eukaryotic Initiation Factor-2/metabolism , Hematopoietic Stem Cells/metabolism , Oxidative Phosphorylation , Phosphorylation
8.
Blood ; 140(15): 1686-1701, 2022 10 13.
Article En | MEDLINE | ID: mdl-35881840

Hematopoietic stem cells (HSCs) have reduced capacities to properly maintain and replenish the hematopoietic system during myelosuppressive injury or aging. Expanding and rejuvenating HSCs for therapeutic purposes has been a long-sought goal with limited progress. Here, we show that the enzyme Sphk2 (sphingosine kinase 2), which generates the lipid metabolite sphingosine-1-phosphate, is highly expressed in HSCs. The deletion of Sphk2 markedly promotes self-renewal and increases the regenerative potential of HSCs. More importantly, Sphk2 deletion globally preserves the young HSC gene expression pattern, improves the function, and sustains the multilineage potential of HSCs during aging. Mechanistically, Sphk2 interacts with prolyl hydroxylase 2 and the Von Hippel-Lindau protein to facilitate HIF1α ubiquitination in the nucleus independent of the Sphk2 catalytic activity. Deletion of Sphk2 increases hypoxic responses by stabilizing the HIF1α protein to upregulate PDK3, a glycolysis checkpoint protein for HSC quiescence, which subsequently enhances the function of HSCs by improving their metabolic fitness; specifically, it enhances anaerobic glycolysis but suppresses mitochondrial oxidative phosphorylation and generation of reactive oxygen species. Overall, targeting Sphk2 to enhance the metabolic fitness of HSCs is a promising strategy to expand and rejuvenate functional HSCs.


Hematopoietic Stem Cells , Sphingosine , Glycolysis/genetics , Hematopoietic Stem Cells/metabolism , Phosphotransferases (Alcohol Group Acceptor) , Prolyl Hydroxylases/metabolism , Reactive Oxygen Species/metabolism
9.
Elife ; 112022 07 29.
Article En | MEDLINE | ID: mdl-35904250

Megakaryocytes (MKs) continuously produce platelets to support hemostasis and form a niche for hematopoietic stem cell maintenance in the bone marrow. MKs are also involved in inflammatory responses; however, the mechanism remains poorly understood. Using single-cell sequencing, we identified a CXCR4 highly expressed MK subpopulation, which exhibited both MK-specific and immune characteristics. CXCR4high MKs interacted with myeloid cells to promote their migration and stimulate the bacterial phagocytosis of macrophages and neutrophils by producing TNFα and IL-6. CXCR4high MKs were also capable of phagocytosis, processing, and presenting antigens to activate T cells. Furthermore, CXCR4high MKs also egressed circulation and infiltrated into the spleen, liver, and lung upon bacterial infection. Ablation of MKs suppressed the innate immune response and T cell activation to impair the anti-bacterial effects in mice under the Listeria monocytogenes challenge. Using hematopoietic stem/progenitor cell lineage-tracing mouse lines, we show that CXCR4high MKs were generated from infection-induced emergency megakaryopoiesis in response to bacterial infection. Overall, we identify the CXCR4high MKs, which regulate host-defense immune response against bacterial infection.


Megakaryocytes , Thrombopoiesis , Animals , Blood Platelets/metabolism , Bone Marrow , Hematopoietic Stem Cells , Megakaryocytes/metabolism , Mice
10.
Haematologica ; 107(10): 2344-2355, 2022 10 01.
Article En | MEDLINE | ID: mdl-35295079

Chemotherapy is the primary treatment option for acute myeloid leukemia (AML), but leukemic stem cells (LSC) can survive chemotherapy for disease recurrence and refractory. Here, we found that AML cells obtained from relapsed patients had increased autophagy levels than de novo AML cells. Furthermore, doxorubicin (DOX) treatment stimulated autophagy in LSC by repressing the mTOR pathway, and pharmaceutical inhibition of autophagy rendered chemoresistant LSC sensitive to DOX treatment in MLL-AF9 induced murine AML. Moreover, we developed a self-assembled leucine polymer, which activated mTOR to inhibit autophagy in AML cells by releasing leucine. The leucine polymer loaded DOX (Leu-DOX) induced much less autophagy but more robust apoptosis in AML cells than the DOX treatment. Notably, the leucine polymer and Leu-DOX were specifically taken up by AML cells and LSC but not by normal hematopoietic cells and hematopoietic stem/progenitor cells in the bone marrow. Consequently, Leu-DOX efficiently reduced LSC and prolonged the survival of AML mice, with more limited myeloablation and tissue damage side effects than DOX treatment. Overall, we proposed that the newly developed Leu-DOX is an effective autophagy inhibitor and an ideal drug to efficiently eliminate LSC, thus serving as a revolutionary strategy to enhance the chemotherapy efficacy in AML.


Leukemia, Myeloid, Acute , Neoplastic Stem Cells , Animals , Autophagy , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Leucine/pharmacology , Mice , Neoplastic Stem Cells/metabolism , Polymers/metabolism , Polymers/pharmacology , Polymers/therapeutic use , TOR Serine-Threonine Kinases/metabolism
11.
Blood ; 139(21): 3204-3221, 2022 05 26.
Article En | MEDLINE | ID: mdl-35259210

Bone marrow-derived mesenchymal stem cells (BMSCs) support bone formation and constitute the stromal niche in regulating hematopoietic stem cells (HSCs). Stromal niche dysfunction affects HSC engraftment during transplantation; however, the underlying mechanisms remain elusive. In the present study, we found that all-trans retinoic acid (ATRA) and inflammation stress upregulated retinoic acid-inducible gene I (RIG-I) in BMSCs. Excess RIG-I expression damaged the clonogenicity, bone-forming ability of BMSCs and particularly their stromal niche function that supports HSC expansion in vitro and engraftment in vivo. Mechanistically, RIG-I elevation promoted the degradation of NRF2, a checkpoint for antioxidant cellular response, by altering the RIG-I-Trim25-Keap1-NRF2 complex, leading to reactive oxygen species (ROS) accumulation and BMSC damage. Genetic inhibition of RIG-I sustained NRF2 protein levels and reduced ROS levels in ATRA-treated BMSCs, thus preserving their clonogenicity, bone-forming ability, and stromal niche function in supporting HSC engraftment in mice. More importantly, RIG-I inhibition recovered the ATRA-treated stromal niche function to enhance HSC engraftment and emergency myelopoiesis for innate immunity against the bacterium Listeria monocytogenes during transplantation. Overall, we identified a noncanonical role of RIG-I in the regulation of the stromal niche for HSC transplantation.


Bone Marrow Transplantation , DEAD Box Protein 58/metabolism , NF-E2-Related Factor 2 , Animals , Hematopoietic Stem Cells/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Mice , Reactive Oxygen Species/metabolism , Stem Cell Niche/physiology
12.
Adv Sci (Weinh) ; 9(9): e2104134, 2022 03.
Article En | MEDLINE | ID: mdl-35080145

Compromised immunosurveillance leads to chemotherapy resistance and disease relapse of hematological malignancies. Amino acid metabolism regulates immune responses and cancer; however, a druggable amino acid metabolite to enhance antitumor immunosurveillance and improve leukemia targeting-therapy efficacy remains unexplored. Here, an L-phenylalanine polymer, Metabolic Reprogramming Immunosurveillance Activation Nanomedicine (MRIAN), is invented to effectively target bone marrow (BM) and activate the immune surveillance in T-cell acute lymphoblastic leukemia (T-ALL) by inhibiting myeloid-derived suppressor cells (MDSCs) in T-ALL murine model. Stable-isotope tracer and in vivo drug distribution experiments show that T-ALL cells and MDSCs have enhanced cellular uptake of L-phenylalanine and MRIANs than normal hematopoietic cells and progenitors. Therefore, MRIAN assembled Doxorubicin (MRIAN-Dox) specifically targets T-ALL cells and MDSCs but spare normal hematopoietic cells and hematopoietic stem and progenitor cells with enhanced leukemic elimination efficiency. Consequently, MRIAN-Dox has reduced cardiotoxicity and myeloablation side effects in treating T-ALL mice. Mechanistically, MRIAN degrades into L-phenylalanine, which inhibits PKM2 activity and reduces ROS levels in MDSCs to disturb their immunosuppressive function and increase their differentiation toward normal myeloid cells. Overall, a novel amino acid metabolite nanomedicine is invented to treat T-ALL through the combination of leukemic cell targeting and immunosurveillance stimulation.


Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Amino Acids , Animals , Drug Carriers , Mice , Monitoring, Immunologic , Polymers , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , T-Lymphocytes
13.
J Hematol Oncol ; 14(1): 189, 2021 11 08.
Article En | MEDLINE | ID: mdl-34749790

The hypoxic microenvironment is presumed to be a sanctuary for myeloid leukemia cells that causes relapse following chemotherapy, but the underlying mechanism remains elusive. Using a zebrafish xenograft model, we observed that the hypoxic hematopoietic tissue preserved most of the chemoresistant leukemic cells following the doxorubicin (Dox) treatment. And hypoxia upregulated TFEB, a master regulator of lysosomal biogenesis, and increased lysosomes in leukemic cells. Specimens from relapsed myeloid leukemia patients also harbored excessive lysosomes, which trapped Dox and prevented drug nuclear influx leading to leukemia chemoresistance. Pharmaceutical inhibition of lysosomes enhanced Dox-induced cytotoxicity against leukemic cells under hypoxia circumstance. To overcome lysosome associated chemoresistance, we developed a pH-sensitive dextran-doxorubicin nanomedicine (Dex-Dox) that efficiently released Dox from lysosomes and increased drug nuclear influx. More importantly, Dex-Dox treatment significantly improved the chemotherapy outcome in the zebrafish xenografts transplanted with cultured leukemic cells or relapsed patient specimens. Overall, we developed a novel lysosome targeting nanomedicine that is promising to overcome the myeloid leukemia chemoresistance.


Antibiotics, Antineoplastic/administration & dosage , Delayed-Action Preparations/chemistry , Dextrans/chemistry , Doxorubicin/administration & dosage , Leukemia, Myeloid/drug therapy , Lysosomes/metabolism , Animals , Antibiotics, Antineoplastic/therapeutic use , Cell Line, Tumor , Doxorubicin/therapeutic use , Drug Delivery Systems , Drug Resistance, Neoplasm , Humans , Leukemia, Myeloid/metabolism , Zebrafish
14.
Front Microbiol ; 12: 707281, 2021.
Article En | MEDLINE | ID: mdl-34616376

Mitochondria are the major energy source for cell functions. However, for the plant fungal pathogens, mitogenome variations and their roles during the host infection processes remain largely unknown. Rhizoctonia solani, an important soil-borne pathogen, forms different anastomosis groups (AGs) and adapts to a broad range of hosts in nature. Here, we reported three complete mitogenomes of AG1-IA RSIA1, AG1-IB RSIB1, and AG1-IC, and performed a comparative analysis with nine published Rhizoctonia mitogenomes (AG1-IA XN, AG1-IB 7/3/14, AG3, AG4, and five Rhizoctonia sp. mitogenomes). These mitogenomes encoded 15 typical proteins (cox1-3, cob, atp6, atp8-9, nad1-6, nad4L, and rps3) and several LAGLIDADG/GIY-YIG endonucleases with sizes ranging from 109,017 bp (Rhizoctonia sp. SM) to 235,849 bp (AG3). We found that their large sizes were mainly contributed by repeat sequences and genes encoding endonucleases. We identified the complete sequence of the rps3 gene in 10 Rhizoctonia mitogenomes, which contained 14 positively selected sites. Moreover, we inferred a robust maximum-likelihood phylogeny of 32 Basidiomycota mitogenomes, representing that seven R. solani and other five Rhizoctonia sp. lineages formed two parallel branches in Agaricomycotina. The comparative analysis showed that mitogenomes of Basidiomycota pathogens had high GC content and mitogenomes of R. solani had high repeat content. Compared to other strains, the AG1-IC strain had low substitution rates, which may affect its mitochondrial phylogenetic placement in the R. solani clade. Additionally, with the published RNA-seq data, we investigated gene expression patterns from different AGs during host infection stages. The expressed genes from AG1-IA (host: rice) and AG3 (host: potato) mainly formed four groups by k-mean partitioning analysis. However, conserved genes represented varied expression patterns, and only the patterns of rps3-nad2 and nad1-m3g18/mag28 (an LAGLIDADG endonuclease) were conserved in AG1-IA and AG3 as shown by the correlation coefficient analysis, suggesting regulation of gene repertoires adapting to infect varied hosts. The results of variations in mitogenome characteristics and the gene substitution rates and expression patterns may provide insights into the evolution of R. solani mitogenomes.

15.
Front Cell Dev Biol ; 9: 658757, 2021.
Article En | MEDLINE | ID: mdl-33889575

Bone marrow mesenchymal stem/stromal cells (BMSCs) can be transformed into tumor-associated MSCs (TA-MSCs) within the tumor microenvironment to facilitate tumor progression. However, the underline mechanism and potential therapeutic strategy remain unclear. Here, we explored that interleukin 17 (IL-17) cooperating with IFNγ transforms BMSCs into TA-MSCs, which promotes tumor progression by recruiting macrophages/monocytes and myeloid-derived suppressor cells (MDSCs) in murine melanoma. IL-17 and IFNγ transformed TA-MSCs have high expression levels of myelocyte-recruiting chemokines (CCL2, CCL5, CCL7, and CCL20) mediated by activated NF-κB signaling pathway. Furthermore, retinoic acid inhibits NF-κB signaling, decreases chemokine expression, and suppresses the tumor-promoting function of transformed TA-MSCs by prohibiting the recruitment of macrophages/monocytes and MDSCs in the tumor microenvironment. Overall, our findings demonstrate that IL-17 collaborating with IFNγ to induce TA-MSC transformation, which can be targeted by RA for melanoma treatment.

16.
Front Cell Dev Biol ; 9: 653308, 2021.
Article En | MEDLINE | ID: mdl-33912565

Bone marrow mesenchymal stem cells (MSCs) are widely used clinically due to their versatile roles in multipotency, immunomodulation, and hematopoietic stem cell (HSC) niche function. However, cellular heterogeneity limits MSCs in the consistency and efficacy of their clinical applications. Metabolism regulates stem cell function and fate decision; however, how metabolites regulate the functional heterogeneity of MSCs remains elusive. Here, using single-cell RNA sequencing, we discovered that fatty acid pathways are involved in the regulation of lineage commitment and functional heterogeneity of MSCs. Functional assays showed that a fatty acid metabolite, butyrate, suppressed the self-renewal, adipogenesis, and osteogenesis differentiation potential of MSCs with increased apoptosis. Conversely, butyrate supplement significantly promoted HSC niche factor expression in MSCs, which suggests that butyrate supplement may provide a therapeutic approach to enhance their HSC niche function. Overall, our work demonstrates that metabolites are essential to regulate the functional heterogeneity of MSCs.

17.
Elife ; 92020 04 30.
Article En | MEDLINE | ID: mdl-32352377

The sox2 expressing (sox2+) progenitors in adult mammalian inner ear lose the capacity to regenerate while progenitors in the zebrafish lateral line are able to proliferate and regenerate damaged HCs throughout lifetime. To mimic the HC damage in mammals, we have established a zebrafish severe injury model to eliminate both progenitors and HCs. The atoh1a expressing (atoh1a+) HC precursors were the main population that survived post severe injury, and gained sox2 expression to initiate progenitor regeneration. In response to severe injury, yap was activated to upregulate lin28a transcription. Severe-injury-induced progenitor regeneration was disabled in lin28a or yap mutants. In contrary, overexpression of lin28a initiated the recovery of sox2+ progenitors. Mechanistically, microRNA let7 acted downstream of lin28a to activate Wnt pathway for promoting regeneration. Our findings that lin28a is necessary and sufficient to regenerate the exhausted sox2+ progenitors shed light on restoration of progenitors to initiate HC regeneration in mammals.


Lateral Line System/metabolism , Nerve Regeneration/physiology , Receptors, Notch/metabolism , Regeneration/physiology , Animals , Cell Proliferation/physiology , Ear, Inner/metabolism , Gene Expression Regulation, Developmental/physiology , Hair Cells, Auditory/physiology , Transcription Factors/metabolism , Zebrafish/genetics , Zebrafish Proteins/metabolism
18.
J Mater Chem B ; 7(4): 576-585, 2019 01 28.
Article En | MEDLINE | ID: mdl-32254791

The intrinsic limits of conventional cancer therapies prompt the development of a new technology for a more effective and safer cancer treatment. The bioresponsive delivery technique has recently emerged as an innovative strategy to overcome multiple barriers in the systemic delivery of nanoparticle (NP)-based therapeutics. However, some issues especially the tumor penetration-retention balance have not been completely solved, which may induce the suboptimal therapeutic effect. Herein, we developed a new multifunctional sharp pH-responsive NP platform for targeted drug delivery and effective cancer therapy. This NP platform is made of the sharp pH-responsive poly(2-(diisopropylamino)ethylmethacrylate) (PDPA) polymer as the inner core, amphiphilic lipid-poly(ethylene glycol) (lipid-PEG) as the outer shell, and the internalizing RGD (iRGD) peptide encoded on the surface. After anticancer drug loading and then systemic administration, the resulting NP platform shows the following features in one nanostructure: (i) the PEG shell to prolong blood circulation; (ii) the iRGD peptide to enhance tumor targeting and penetration; (iii) a larger particle size (∼80 nm) than that of free drug to ensure long tumor retention; (iv) the sharp endosomal pH response of the PDPA polymer to induce fast intracellular drug release and thus efficient inhibition of tumor growth. Together with facile polymer synthesis and robust NP formulation to enable easy scale-up, the multifunctional NP platform reported herein shows great potential as a new generation nanomedicine for effective cancer treatment.


Breast Neoplasms/drug therapy , Drug Carriers/therapeutic use , Drug Delivery Systems/methods , Multifunctional Nanoparticles/therapeutic use , Nanomedicine/methods , Animals , Antineoplastic Agents/administration & dosage , Female , Humans , MCF-7 Cells , Mice , Mice, Inbred BALB C , Mice, Nude , Mitoxantrone/administration & dosage , Oligopeptides/administration & dosage , Polyethylene Glycols/chemistry , Polymethacrylic Acids/chemistry , Xenograft Model Antitumor Assays
20.
J Exp Med ; 215(5): 1337-1347, 2018 05 07.
Article En | MEDLINE | ID: mdl-29669741

Cell cycle quiescence is critical for hematopoietic stem cell (HSC) maintenance. TGF-ß signaling in bone marrow niche has been identified in regulating HSC quiescence; however, the intrinsic regulatory mechanisms remain unclear. This study reports that Shp-1 knockout HSCs have attenuated quiescence and impaired long-term self-renewal. SHP-1-activated HSCs are surrounded by megakaryocytes, which regulate HSC quiescence by producing TGF-ß1. Mechanistically, SHP-1 interacts with the immunoreceptor tyrosine-based inhibition motif on TGF-ß receptor 1 and is critical for TGF-ß signaling activation in HSCs. Functionally, Shp-1 knockout HSCs do not respond to TGF-ß-enforced HSC quiescence regulation, both in vitro and in vivo. Therefore, we identify TGF-ß-SHP-1 as a novel intrinsic regulatory mechanism for HSC quiescence maintenance.


Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 6/metabolism , Signal Transduction , Transforming Growth Factor beta/metabolism , Amino Acid Sequence , Animals , Cell Self Renewal , Mice, Inbred C57BL , Protein Binding , Protein Tyrosine Phosphatase, Non-Receptor Type 6/chemistry , Receptors, Transforming Growth Factor beta/metabolism , Stem Cell Niche , Time Factors
...