Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 34
1.
J Sci Food Agric ; 2024 Jun 03.
Article En | MEDLINE | ID: mdl-38828561

BACKGROUND: Biopolymer based water-in-oil-in-water double (W1/O/W2) emulsion systems comprise a complex emulsion system that might be affected by several factors and the status at multiple phases. The present study investigated the physicochemical properties of W1/O/W2 double emulsions with inner W1 phase incorporated with various polysaccharides and the outer phase stabilized by whey protein isolate (WPI). Six different polysaccharides were selected as co-emulsifiers in the inner phase, and their effects on morphology, droplet size, zeta potential and rheology properties were evaluated. Furthermore, the impact of WPI/polysaccharide concentration and pH on the physicochemical properties and storage stability of the emulsions was compared. RESULTS: Emulsions with an inner phase incorporated with xanthan gum and carrageenan exhibited better stability than others. Increasing the concentration of WPI enhanced the overall stability of the double emulsion, although it compromised the integrity of the internal W1/O interface. On the other hand, a 1.0% concentration of polysaccharide, specifically when carrageenan is used, slowed down droplet floating and coagulation. An acidic external aqueous phase (pH 4) led to larger and more uniform particle size distributions, as well as enhanced stability. The lower pH decreased the viscosity and delayed molecular exchange in the oil phase, thereby preserving the structure of the double emulsion. CONCLUSION: These findings contribute to a better understanding of the factors influencing the stability and properties of W1/O/W2 double emulsions with addition of anionic polysaccharides in the inner water phase. © 2024 Society of Chemical Industry.

2.
J Agric Food Chem ; 72(25): 14126-14140, 2024 Jun 26.
Article En | MEDLINE | ID: mdl-38861684

This study confirmed a field population of American sloughgrass (Beckmannia syzigachne (Steud.) Fernald) that developed simultaneously high levels of resistance (resistance index >10) to three divergent modes of action herbicides: fenoxaprop-P-ethyl, mesosulfuron-methyl, and isoproturon. The resistance phenotype observed in this population was not attributed to target-site alterations; rather, the resistant plants exhibited a significant increase in the activity of cytochrome P450s (P450s) and enhanced metabolism rates for all three herbicides. RNA sequencing revealed significant upregulation of two P450s, CYP709B1 and CYP704C1, in the resistant plants both before and after herbicide treatments. Molecular docking predicted that the homology models of these P450s should exhibit a binding affinity for a range of herbicides. The heterologous expression of the identified P450s in yeast cells indicated improved growth in the presence of all three of the aforementioned herbicides. Collectively, the increased expression of CYP709B1 and CYP704C1 likely contributed to the P450s-mediated enhanced metabolism, thereby conferring multiple herbicide resistance in B. syzigachne.


Cytochrome P-450 Enzyme System , Herbicide Resistance , Herbicides , Plant Proteins , Herbicide Resistance/genetics , Cytochrome P-450 Enzyme System/metabolism , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/chemistry , Herbicides/pharmacology , Herbicides/metabolism , Herbicides/chemistry , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Proteins/chemistry , Molecular Docking Simulation , Poaceae/genetics , Poaceae/metabolism , Poaceae/enzymology , Poaceae/drug effects , Poaceae/chemistry
3.
Adv Mater ; : e2405145, 2024 Jun 14.
Article En | MEDLINE | ID: mdl-38877385

Biomimetic humidity sensors offer a low-power approach for respiratory monitoring in early lung-disease diagnosis. However, balancing miniaturization and energy efficiency remains challenging. This study addresses this issue by introducing a bioinspired humidity-sensing neuron comprising a self-assembled peptide nanowire (NW) memristor with unique proton-coupled ion transport. The proposed neuron shows a low Ag+ activation energy owing to the NW and redox activity of the tyrosine (Tyr)-rich peptide in the system, facilitating ultralow electric-field-driven threshold switching and a high energy efficiency. Additionally, Ag+ migration in the system can be controlled by a proton source owing to the hydrophilic nature of the phenolic hydroxyl group in Tyr, enabling the humidity-based control of the conductance state of the memristor. Furthermore, a memristor-based neuromorphic perception neuron that can encode humidity signals into spikes is proposed. The spiking characteristics of this neuron can be modulated to emulate the strength-modulated spike-frequency characteristics of biological neurons. A three-layer spiking neural network with input neurons comprising these highly tunable humidity perception neurons shows an accuracy of 92.68% in lung-disease diagnosis. This study paves the way for developing bioinspired self-assembly strategies to construct neuromorphic perception systems, bridging the gap between artificial and biological sensing and processing paradigms. This article is protected by copyright. All rights reserved.

4.
J Agric Food Chem ; 72(21): 12014-12028, 2024 May 29.
Article En | MEDLINE | ID: mdl-38748759

Alopecurus aequalis Sobol. is a predominant grass weed in Chinese winter wheat fields, posing a substantial threat to crop production owing to its escalating herbicide resistance. This study documented the initial instance of an A. aequalis population (AHFT-3) manifesting resistance to multiple herbicides targeting four distinct sites: acetyl-CoA carboxylase (ACCase), acetolactate synthase, photosystem II, and 1-deoxy-d-xylulose-5-phosphate synthase. AHFT-3 carried an Asp-to-Gly mutation at codon 2078 of ACCase, with no mutations in the remaining three herbicide target genes, and exhibited no overexpression of any target gene. Compared with the susceptible population AHFY-3, AHFT-3 metabolized mesosulfuron-methyl, isoproturon, and bixlozone faster. The inhibition and comparison of herbicide-detoxifying enzyme activities indicated the participation of cytochrome P450s in the resistance to all four herbicides, with glutathione S-transferases specifically linked to mesosulfuron-methyl. Three CYP72As and a Tau class glutathione S-transferase, markedly upregulated in resistant plants, potentially played pivotal roles in the multiple-herbicide-resistance phenotype.


Acetyl-CoA Carboxylase , Herbicide Resistance , Herbicides , Plant Proteins , Poaceae , Herbicide Resistance/genetics , Herbicides/pharmacology , Herbicides/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Acetyl-CoA Carboxylase/genetics , Acetyl-CoA Carboxylase/metabolism , Poaceae/genetics , Poaceae/metabolism , Poaceae/drug effects , Acetolactate Synthase/genetics , Acetolactate Synthase/metabolism , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Mutation , Plant Weeds/drug effects , Plant Weeds/genetics , Plant Weeds/metabolism
5.
Pestic Biochem Physiol ; 200: 105826, 2024 Mar.
Article En | MEDLINE | ID: mdl-38582590

Acetyl-CoA carboxylase (ACCase)-inhibiting herbicides are among the most commonly used herbicides to control grassy weeds, especially Leptochloa chinensis, in rice fields across China. Herein, we collected a suspected resistant (R) population of L. chinensis (HFLJ16) from Lujiang county in Anhui Province. Whole plant dose response tests showed that, compared with the susceptible (S) population, the R population showed high resistance to cyhalofop-butyl (22-fold) and displayed cross-resistance to metamifop (9.7-fold), fenoxaprop-P-ethyl (18.7-fold), quizalofop-P-ethyl (7.6-fold), clodinafop-propargyl (12-fold) and clethodim (8.4-fold). We detected an amino acid substitution (Cys-2088-Arg) in the ACCase of resistant L. chinensis. However, ACCase gene expression levels were not significantly different (P > 0.05) between R plants and S plants, without or with cyhalofop-butyl treatment. Furthermore, pretreatment with piperonyl butoxide (PBO, a cytochrome P450 monooxygenase (CYP450) inhibitor) or 4-chloro-7-nitrobenzoxadiazole (NBD-Cl, a glutathione-S-transferase (GST) inhibitor), inhibited the resistance of the R population to cyhalofop-butyl significantly (by approximately 60% and 26%, respectively). Liquid chromatography tandem mass spectrometry analysis showed that R plants metabolized cyhalofop-butyl and cyhalofop acid (its metabolite) significantly faster than S plants. Three CYP450 genes, one GST gene, and two ABC transporter genes were induced by cyhalofop-butyl and were overexpressed in the R population. Overall, GST-associated detoxification, CYP450 enhancement, and target-site gene mutation are responsible for the resistance of L. chinensis to cyhalofop-butyl.


4-Chloro-7-nitrobenzofurazan , Acetyl-CoA Carboxylase , Butanes , Herbicides , Nitriles , Oxazoles , Propionates , Acetyl-CoA Carboxylase/metabolism , Plant Proteins/genetics , Poaceae/genetics , Poaceae/metabolism , Herbicides/pharmacology , Cytochrome P-450 Enzyme System/genetics , Mutation , Herbicide Resistance/genetics
6.
Int J Biol Macromol ; 269(Pt 1): 131850, 2024 Jun.
Article En | MEDLINE | ID: mdl-38670201

As water pollution and scarcity pose severe threats to the sustainable progress of human society, it is important to develop a method or materials that can accurately and efficiently detect pollutants and purify aquatic environments or exploit marine resources. The compositing of photoluminescent and hydrophilic carbon dots (CDs) with hydrogels bearing three-dimensional networks to form CD-hydrogel composites to protect aquatic environments is a "win-win" strategy. Herein, the feasibility of the aforementioned method has been demonstrated. This paper reviews the recent progress of CD-hydrogel materials used in aquatic environments. First, the synthesis methods for these composites are discussed, and then, the composites are categorized according to different methods of combining the raw materials. Thereafter, the progress in research on CD-hydrogel materials in the field of water quality detection and purification is reviewed in terms of the application of the mechanisms. Finally, the current challenges and prospects of CD-hydrogel materials are described. These results are expected to provide insights into the development of CD-hydrogel composites for researchers in this field.


Carbon , Hydrogels , Quantum Dots , Carbon/chemistry , Hydrogels/chemistry , Quantum Dots/chemistry , Water Purification/methods , Water Pollutants, Chemical/isolation & purification , Water Pollutants, Chemical/chemistry , Water/chemistry , Nanocomposites/chemistry
7.
Sci Rep ; 14(1): 6480, 2024 Mar 18.
Article En | MEDLINE | ID: mdl-38499586

The application of fertilizer to ensure the steady improvement of crop yield has become the main means of agricultural production. However, it remains to be determined whether fertilization practices with different combinations of nitrogen (N), phosphorus (P), potassium (K), and organic (O) fertilizers play a positive role in the sustainability of maize yield and the soil in which it is grown. Therefore,this meta-analysis extracted 2663 data points from 76 studies to systematically analyze and explore the effects of different fertilization measures on maize yield, soil nutrients, water content and water use efficiency (WUE) in northern China. Articles addressing this topic showed that fertilization effectively increased the soil nutrient content and maize yield. The soil organic matter (SOM) increased by 2.36 (N)-55.38% (NPO), total nitrogen content increased by 6.10 (N)-56.39% (NPO), available phosphorus content increased by 17.12 (N)-474.74% (NPO), and available potassium content changed by - 2.90 (NP)-64.40% (NPO). Soil moisture increased by 3.59% under a single organic fertilizer application and decreased by 4.27-13.40% under the other treatments. Compared with no fertilization, the yield increase of fertilized maize reached 11.65-220.42%. NP, NPK and NPKO contributed the most to increased yield in lithological, black and fluvo-aquic soils, respectively. The effects of different fertilization practices on maize yield varied in response to the same meteorological factors. The WUE increased from 9.51 to 160.72%. In conclusion, rational fertilization can improve the soil nutrient content and increase maize yield. The combined application of chemical and organic fertilizer showed the greatest increase in yield and WUE. Organic fertilizer application alone increased soil moisture. Our results provide a theoretical basis for fertilizer application and for improving the soil structure for maize cultivation in northern China.

8.
Clin Transl Med ; 13(12): e1514, 2023 12.
Article En | MEDLINE | ID: mdl-38115701

BACKGROUND: IGH::DUX4 is frequently observed in 4% B-cell acute lymphoblastic leukaemia patients. Regarding the IGH::DUX4-driven transactivation and alternative splicing, which are the main reasons behind this acute leukaemia outbreak, it remains unclear how transcriptional cofactors contribute to this oncogenic process. Further investigation is required to elucidate their specific role in leukaemogenesis. METHODS: In order to investigate the cofactors of IGH::DUX4, integrated mining of Chromatin immunoprecipitation (ChIP)-sequencing and RNA-sequencing of leukaemia cells and patient samples were conducted. Furthermore, to elucidate the synergistic interaction between transcription factor 12 (TCF12) and IGH::DUX4, knockdown and knockout experiment, mammalian two-hybridisation assay, co-immunoprecipitation and in situ proximity ligation assays were carried out. Additionally, to further investigate the direct interaction between TCF12 and IGH::DUX4, AI-based structural simulations were utilised. Finally, to validate the synergistic role of TCF12 in promoting IGH::DUX4 leukaemia, cell proliferation, apoptosis and drug sensitivity experiments were performed. RESULTS: In this study, we observed that the IGH::DUX4 target gene TCF12 might be an important cofactor/helper for this oncogenic driver. The co-expression of IGH::DUX4 and TCF12 resulted in enhanced DUX4-driven transactivation. Supportively, knockdown and knockout of TCF12 significantly reduced expression of IGH::DUX4-driven target genes in leukaemia REH (a precursor B-cell leukaemia cell line) and NALM-6 cells (a precursor B-cell leukaemia cell line). Consistently, in TCF12 knockout cells, the expression of structure-based TCF12 mutant, but not wild-type TCF12, failed to restore the TCF12-IGH::DUX4 crosstalk and the synergistic transactivation. More importantly, the breakdown in TCF12-IGH::DUX4 cooperation impaired IGH::DUX4-driven leukaemia cell survival, caused sensitivity to the chemotherapy. CONCLUSIONS: Altogether, these results helped to define a previously unrecognised TCF12-mediated positive self-feedback regulatory mechanism in IGH::DUX4 leukaemia, which holds the potential to function as a pivotal drug target for the management of this particular form of leukaemia. HIGHLIGHTS: Transcription factor 12 (TCF12) is a new novel cofactor in IGH::DUX4 transcriptional complexes/machinery. TCF12 mediates a positive self-feedback regulatory mechanism in IGH::DUX4-driven oncogenic transaction. IGH::DUX4-TCF12 structure/cooperation might represent a potent target/direction in future drug design against B-cell acute lymphoblastic leukaemia.


Leukemia, B-Cell , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma , Animals , Humans , Feedback , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Cell Line , Carcinogenesis/genetics , Mammals
9.
Nat Commun ; 14(1): 6995, 2023 Nov 01.
Article En | MEDLINE | ID: mdl-37914741

Quantum storage and distribution of entanglement are the key ingredients for realizing a global quantum internet. Compatible with existing fiber networks, telecom-wavelength entangled photons and corresponding quantum memories are of central interest. Recently, 167Er3+ ions have been identified as a promising candidate for an efficient telecom quantum memory. However, to date, no storage of entangled photons, the crucial step of quantum memory using these promising ions, 167Er3+, has been reported. Here, we demonstrate the storage and retrieval of the entangled state of two telecom photons generated from an integrated photonic chip. Combining the natural narrow linewidth of the entangled photons and long storage time of 167Er3+ ions, we achieve storage time of 1.936 µs, more than 387 times longer than in previous works. Successful storage of entanglement in the crystal is certified using entanglement witness measurements. These results pave the way for realizing quantum networks based on solid-state devices.

10.
Biology (Basel) ; 12(9)2023 Aug 31.
Article En | MEDLINE | ID: mdl-37759591

Large crabgrass (Digitaria sanguinalis (L.) Scop.) is one of the major malignant grass weeds in Chinese maize (Zea mays L.) fields, and it has recently developed resistance to the acetolactate synthase (ALS)-inhibiting herbicide nicosulfuron. This study focused on a suspected nicosulfuron-resistant (R) population (LJ-01) of D. sanguinalis, collected from Lujiang County in Anhui Province, China, to explore the resistance level and potential resistance mechanism. Whole-plant dose-response testing confirmed that the LJ-01 population evolved a high level of resistance to nicosulfuron (11.5-fold) compared to the susceptible (S) population, DY-02. The ALS gene sequencing and relative expression assay of the R plants indicated that target gene mutation and overexpression were not responsible for the resistance phenotype. However, pretreatment with malathion, a known cytochrome P450 monooxygenase (P450) inhibitor, alleviated the resistance of the R population to nicosulfuron by approximately 36%. High-performance liquid chromatography (HPLC) analysis revealed that the R plants metabolized nicosulfuron faster than the S plants. Moreover, cross-resistance testing suggested that the R population exhibited low levels of resistance to thifensulfuron-methyl and pyrazosulfuron-ethyl, but it remained susceptible to rimsulfuron. Multiple resistance patterns showed that the R population evolved low resistance to the photosystem inhibitors bromoxynil octanoate and atrazine and sensitivity to the acetyl-CoA carboxylase (ACCase) inhibitor cyhalofop-butyl and the 4-hydroxyphenylpyruvate dioxygenase (HPPD) inhibitors tembotrione, mesotrione, and topramezone. This study reports, for the first time, the simultaneous resistance to ALS and different photosystem inhibitors in D. sanguinalis. The nicosulfuron resistance observed in the R population could primarily be attributed to an enhanced metabolism involving P450 enzymes.

11.
J Cancer Res Clin Oncol ; 149(16): 14911-14926, 2023 Nov.
Article En | MEDLINE | ID: mdl-37603105

BACKGROUND: Glioma is the prevailing malignant tumor affecting the brain and central nervous system, constituting over 80% of all malignant brain tumors. HOXD9 has been implicated in the development of glioma, but the specific mechanism of its influence on glioma pathogenesis remains incompletely understood. The purpose of this study was to investigate the role of HOXD9 in glioma and examine the changes in HOXD9 expression during the progression of glioma, thus contributing new insights into the pathogenesis of glioma. METHODS: Glioma samples from the Cancer Gene Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) datasets were included in this study. Variations in HOXD9 expression in gliomas between different subgroups of multiple clinical characteristics were explored, and the expression was validated in glioma samples using qRT-PCR and western blotting. Next, the impact of HOXD9 on the prognosis of gliomas was explored by survival analysis, receiver operating characteristic curve, and nomogram plots. Subsequently, the association between HOXD9 and the tumor immune microenvironment was explored using the ssGSEA algorithm and the ESTIMATE algorithm. Then, immune-related pathways associated with HOXD9 were determined by differential express analysis and GSEA. Finally, HOXD9-related genomic alterations were identified. RESULTS: HOXD9 expression is upregulated and correlated with malignant properties in glioma. Similarly, our validation results showed significantly upregulated protein and mRNA levels of HOXD9 in glioma brain tissues. In addition, high HOXD9 expression was indicative of a poor prognosis for glioma patients. Additionally, elevated HOXD9 levels were associated with reduced tumor purity and higher levels of immune invasion. Finally, HOXD9 was significantly associated with genomic alterations. CONCLUSION: Overall, this study has unveiled a significant association between HOXD9 and the prognosis and survival of glioma patients. Our findings highlight the potential of HOXD9 as a prognostic biomarker, implicating its role in influencing the glioma immune microenvironment.


Brain Neoplasms , Glioma , Humans , Prognosis , Glioma/genetics , Brain Neoplasms/genetics , Oncogenes , Biomarkers , Tumor Microenvironment/genetics , Neoplasm Proteins , Homeodomain Proteins/genetics
12.
Trends Cancer ; 9(10): 855-870, 2023 10.
Article En | MEDLINE | ID: mdl-37407363

The biological regulation of transcription factors (TFs) and repressor proteins is an important mechanism for maintaining cell homeostasis. In B cell acute lymphoblastic leukemia (B-ALL) TF abnormalities occur at high frequency and are often recognized as the major driving factor in carcinogenesis. We provide an in-depth review of molecular mechanisms of six major TF rearrangements in B-ALL, including DUX4-rearranged (DUX4-R), MEF2D-R, ZNF384-R, ETV6-RUNX1 and TCF3-PBX1 fusions, and KMT2A-R. In addition, the therapeutic options and prognoses for patients who harbor these TF abnormalities are discussed. This review aims to provide an up-to-date panoramic view of how TF-based oncogenic fusions might drive carcinogenesis and impact on potential therapeutic exploration of B-ALL treatments.


Oncogene Proteins, Fusion , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma , Humans , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Transcription Factors/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Prognosis , Carcinogenesis/genetics
13.
FASEB J ; 37(6): e22986, 2023 06.
Article En | MEDLINE | ID: mdl-37219517

PML nuclear body (NB) malfunction often leads to acute leukemia outbreaks and other severe diseases. PML NB rescue is the molecular basis of arsenic success in acute promyelocytic leukemia (APL) treatment. However, it is unclear how PML NBs are assembled. Here, we observed the presence of liquid-liquid phase separation (LLPS) in NB formation by fluorescence recovery after photobleaching (FRAP) experiment. Compared with the wild-type (WT) NBs, PML A216V derived from arsenic-resistant leukemia patients markedly crippled LLPS, but not altered the overall structure and PML RBCC oligomerization. In parallel, we also reported several Leu to Pro mutations that were critical to PML coiled-coil domain. FRAP characterization and comparison between L268P and A216V revealed markedly different LLPS activities in these mutant NBs. Transmission electron microscopy (TEM) inspections of LLPS-crippled and uncrippled NBs showed aggregation- and ring-like PML packing in A216V and WT/L268P NBs, respectively. More importantly, the correct LLPS-driven NB formation was the prerequisite for partner recruitment, post-translational modifications (PTMs), and PML-driven cellular regulations, such as ROS stress control, mitochondria production, and PML-p53-mediated senescence and apoptosis. Altogether, our results helped to define a critical LLPS step in PML NB biogenesis.


Arsenic , Leukemia , Humans , Apoptosis , Promyelocytic Leukemia Nuclear Bodies
14.
Brief Bioinform ; 24(3)2023 05 19.
Article En | MEDLINE | ID: mdl-37020334

RNA alternative splicing, a post-transcriptional stage in eukaryotes, is crucial in cellular homeostasis and disease processes. Due to the rapid development of the next-generation sequencing (NGS) technology and the flood of NGS data, the detection of differential splicing from RNA-seq data has become mainstream. A range of bioinformatic tools has been developed. However, until now, an independent and comprehensive comparison of available algorithms/tools at the event level is still lacking. Here, 21 different tools are subjected to systematic evaluation, based on simulated RNA-seq data where exact differential splicing events are introduced. We observe immense discrepancies among these tools. SUPPA, DARTS, rMATS and LeafCutter outperforme other event-based tools. We also examine the abilities of the tools to identify novel splicing events, which shows that most event-based tools are unsuitable for discovering novel splice sites. To improve the overall performance, we present two methodological approaches i.e. low-expression transcript filtering and tool-pair combination. Finally, a new protocol of selecting tools to perform differential splicing analysis for different analytical tasks (e.g. precision and recall rate) is proposed. Under this protocol, we analyze the distinct splicing landscape in the DUX4/IGH subgroup of B-cell acute lymphoblastic leukemia and uncover the differential splicing of TCF12. All codes needed to reproduce the results are available at https://github.com/mhjiang97/Benchmarking_DS.


Benchmarking , Software , RNA-Seq , Sequence Analysis, RNA/methods , RNA Splicing , Alternative Splicing
15.
Front Med ; 17(4): 758-767, 2023 Aug.
Article En | MEDLINE | ID: mdl-37000349

With the recent ongoing autumn/winter 2022 COVID-19 wave and the adjustment of public health control measures, there have been widespread SARS-CoV-2 infections in Chinese mainland. Here we have analyzed 369 viral genomes from recently diagnosed COVID-19 patients in Shanghai, identifying a large number of sublineages of the SARS-CoV-2 Omicron family. Phylogenetic analysis, coupled with contact history tracing, revealed simultaneous community transmission of two Omicron sublineages dominating the infections in some areas of China (BA.5.2 mainly in Guangzhou and Shanghai, and BF.7 mainly in Beijing) and two highly infectious sublineages recently imported from abroad (XBB and BQ.1). Publicly available data from August 31 to November 29, 2022 indicated an overall severe/critical case rate of 0.035% nationwide, while analysis of 5706 symptomatic patients treated at the Shanghai Public Health Center between September 1 and December 26, 2022 showed that 20 cases (0.35%) without comorbidities progressed into severe/critical conditions and 153 cases (2.68%) with COVID-19-exacerbated comorbidities progressed into severe/critical conditions. These observations shall alert healthcare providers to place more resources for the treatment of severe/critical cases. Furthermore, mathematical modeling predicts this autumn/winter wave might pass through major cities in China by the end of the year, whereas some middle and western provinces and rural areas would be hit by the upcoming infection wave in mid-to-late January 2023, and the duration and magnitude of upcoming outbreak could be dramatically enhanced by the extensive travels during the Spring Festival (January 21, 2023). Altogether, these preliminary data highlight the needs to allocate resources to early diagnosis and effective treatment of severe cases and the protection of vulnerable population, especially in the rural areas, to ensure the country's smooth exit from the ongoing pandemic and accelerate socio-economic recovery.

16.
Pest Manag Sci ; 79(8): 2725-2736, 2023 Aug.
Article En | MEDLINE | ID: mdl-36914944

BACKGROUND: Echinochloa glabrescens Munro ex Hook. f. is one of the main Echinochloa spp. seriously invading Chinese rice fields and has evolved resistance to commonly used herbicides. Previously, an E. glabrescens population (LJ-02) with suspected resistance to the acetyl-CoA carboxylase (ACCase)-inhibiting herbicide metamifop was collected. This study aimed to determine its resistance status to metamifop and investigate the internal molecular mechanisms of resistance. RESULTS: Single-dose testing confirmed that the LJ-02 population had evolved resistance to metamifop. Gene sequencing and a relative expression assay of ACCase ruled out target-site based resistance to metamifop in LJ-02. Whole-plant bioassays revealed that, compared with the susceptible population XZ-01, LJ-02 was highly resistant to metamifop and exhibited cross-resistance to fenoxaprop-P-ethyl. Pretreatment with the known glutathione S-transferase (GST) inhibitor, 4-chloro-7-nitrobenzoxadiazole (NBD-Cl), largely reversed the resistance to metamifop by approximately 81%. Liquid chromatography-tandem mass spectrometry analysis indicated that the metabolic rates of one of the major metabolites of metamifop, N-(2-fluorophenyl)-2-hydroxy-N-methylpropionamide (HPFMA), were up to 383-fold faster in LJ-02 plants than in XZ-01 plants. There were higher basal and metamifop-inducible GST activities toward 1-chloro-2,4-dinitrobenzene (CDNB) in LJ-02 than in XZ-01. Six GST genes were metamifop-induced and overexpressed in the resistant LJ-02 population. CONCLUSION: This study reports, for the first time, the occurrence of metabolic metamifop resistance in E. glabrescens worldwide. The high-level metamifop resistance in the LJ-02 population may mainly involve specific isoforms of GSTs that endow high catalytic activity and strong substrate specificity. © 2023 Society of Chemical Industry.


Echinochloa , Herbicides , Echinochloa/genetics , Herbicide Resistance/genetics , Herbicides/pharmacology , Acetyl-CoA Carboxylase/genetics , Acetyl-CoA Carboxylase/metabolism , Glutathione , Transferases
17.
Int J Biol Macromol ; 233: 123554, 2023 Apr 01.
Article En | MEDLINE | ID: mdl-36740109

Glycated conjugation of plant protein such as soy protein isolate (SPI) with saccharides is one popular strategy to modify the physicochemical characteristics of these plant protein resources, which may be affected by the glycation methods including dry-heating and wet-heating. In this study, the impact of these two glycation methods on the rheological and emulsifying properties of a binary system made by SPI-gum Arabic (GA) was studied. The results indicated that dry-heating conjugates had higher viscosity and more elastic characteristics than those wet-heating conjugates. The emulsifying properties of SPI-GA conjugates by different preparation routes were evaluated by various oil phases including eugenol, cinnamaldehyde and soybean oil. Overall, emulsions stabilized by dry-heating conjugates showed lower zeta-potential value than those with wet heating conjugates. The interfacial properties of these conjugates were compared using soybean oil emulsion as a model. Higher emulsifying ability and stability were obtained by emulsions with dry-heating conjugates, which was attributed to their more compact structures, higher protein adsorption capacity and thicker viscoelastic films formed at the interface, and therefore enhanced electrostatic repulsion between droplets. The findings in this study are useful for fabrication and utilization of protein-polysaccharide glycation conjugates as emulsifiers in functional foods.


Gum Arabic , Soybean Proteins , Soybean Proteins/chemistry , Emulsions/chemistry , Gum Arabic/chemistry , Maillard Reaction , Soybean Oil , Emulsifying Agents/chemistry , Plant Proteins
18.
Front Med (Lausanne) ; 9: 1021560, 2022.
Article En | MEDLINE | ID: mdl-36425099

The SARS-CoV-2 Omicron outbreak is ongoing in Shanghai, home to 25 million population. Here, we presented a novel mathematical model to evaluate the Omicron spread and Zero-COVID strategy. Our model provided important parameters, the average quarantine ratio, the detection interval from being infected to being tested positive, and the spreading coefficient to understand the epidemic progression better. Moreover, we found that the key to a relatively accurate long-term forecast was to take the variation/relaxation of the parameters into consideration based on the flexible execution of the quarantine policy. This allowed us to propose the criteria for estimating the parameters and outcome for the ending stage that is likely to take place in late May. Altogether, this model helped to give a correct mathematical appraisal of the SARS-CoV-2 Omicron outbreak under the strict Zero-COVID policy in China.

19.
Foods ; 11(19)2022 Oct 05.
Article En | MEDLINE | ID: mdl-36230173

Stabilizing emulsion using complex biopolymers is a common strategy. It would be very interesting to characterize the impact of charge density on the emulsifying properties of complex polyelectrolytes carrying opposite charges. In this study, cationic modified microcrystalline celluloses (CMCC) of different charge densities were prepared and mixed with soy protein isolate (SPI) for emulsion applications. CMCC-1 to 3 with various cationic charge values were successfully prepared as characterized by zeta-potential and FTIR. The positive charge density's effects on solubility, thermogravimetric properties, and rheological properties were studied. Complexes of SPI-CMCC with various zeta-potential values were then obtained and used to stabilize soybean oil emulsions. The results show that emulsions stabilized by complexes of SPI and CMCC-3 at a ratio of 1:3 had the best emulsification ability and stability. However, the interfacial tension-reducing ability of complexes decreased continuously with increasing cationic charge value, while the rheological results show that complexes of SPI-CMCC-3 at a ratio of 1:3 formed a stronger viscoelastic network than other complexes. Our results indicate that this SPI-CMCC complex formula showed excellent emulsification performance, which could be adjusted and promoted by changing the charge density. This complex formula is promising for fabrication of emulsion-based food and cosmetic products.

20.
Phytochemistry ; 204: 113468, 2022 Dec.
Article En | MEDLINE | ID: mdl-36191659

Investigation of the whole plant of Daphne gemmata E. Pritz. ex Diels (Thymelaeaceae) using molecular networking coupled to Network Annotation Propagation (NAP) and unsupervised substructure annotation (MS2LDA) led to the discovery of five tigliane diterpenoids, 14 guaiane sesquiterpenoids, one rhamnofolane diterpenoid and three carotene sesquiterpenoids. The structures of the eight undescribed compounds, daphnorbol A and daphnegemmatoids A-G, were characterized by detailed spectroscopic analyses, NMR and ECD calculations, application of Snatzke's method and single-crystal X-ray diffraction analysis. All isolated compounds were evaluated for their cytotoxic activities against HepG2, A549, and MCF-7 cells by MTT assay. Daphnorbol A exhibited significant cytotoxic activity against HepG2 and A549 cells with IC50 values of 4.06 µM and 6.35 µM, respectively. Prostratin showed potent cytotoxic activity against HepG2 and A549 cells with IC50 values of 6.06 µM and 5.45 µM, respectively. Further Hoechst 33,258 and AO-EB staining assays indicated that daphnorbol A and prostratin could induce apoptosis in HepG2 and A549 cells.

...