Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Mol Clin Oncol ; 20(3): 20, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38332990

RESUMEN

The combination of thoracic radiotherapy and immune checkpoint inhibitors (ICIs) has emerged as a novel treatment approach for malignant tumors. However, it is important to consider the potential exacerbation of lung injury associated with this treatment modality. The neutrophil-to-lymphocyte ratio (NLR), an inflammatory marker, holds promise as a non-invasive indicator for assessing the toxicity of this combination therapy. To investigate this further, a study involving 80 patients who underwent thoracic radiotherapy in conjunction with ICIs was conducted. These patients were divided into two groups: The concurrent therapy group and the sequential therapy group. A logistic regression analysis was conducted to ascertain risk factors for grade ≥2 pneumonitis. Following propensity score matching, the NLR values were examined between the concurrent group and the sequential group to evaluate any disparity. A mouse model of radiation pneumonitis was established, and ICIs were administered at varying time points. The morphological evaluation of lung injury was conducted using H&E staining, while the NLR values of peripheral blood were detected through flow cytometry. Logistic regression analysis revealed that radiation dosimetric parameters (mean lung dose, total dose and V20), the inflammatory index NLR at the onset of pneumonitis, and treatment sequences (concurrent or sequential) were identified as independent predictors of grade ≥2 treatment-related pneumonitis. The results of the morphological evaluation indicated that the severity of lung tissue injury was greater in cases where programmed cell death protein 1 (PD-1) blockade was administered during thoracic radiotherapy, compared with cases where PD-1 blockade was administered 14 days after radiotherapy. Moreover, the present study demonstrated that the non-invasive indicator known as the NLR has the potential to accurately reflect the aforementioned injury.

2.
ACS Infect Dis ; 10(1): 57-63, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38048277

RESUMEN

Filoviruses comprise a family of single-stranded, negative-sense RNA viruses with a significant impact on human health. Given the risk for disease outbreaks, as highlighted by the recent outbreaks across Africa, there is an unmet need for flexible diagnostic technologies that can be deployed in resource-limited settings. Herein, we highlight the use of plasmonic-fluor lateral flow assays (PF-LFA) for the rapid, quantitative detection of an Ebolavirus-secreted glycoprotein, a marker for infection. Plasmonic fluors are a class of ultrabright reporter molecules that combine engineered nanorods with conventional fluorophores, resulting in improved analytical sensitivity. We have developed a PF-LFA for Orthoebolavirus zairense (EBOV) and Orthoebolavirus sudanense (SUDV) that provides estimated limits of detection as low as 0.446 and 0.641 ng/mL, respectively. Furthermore, our assay highlights a high degree of specificity between the two viral species while also maintaining a turnaround time as short as 30 min. To highlight the utility of our PF-LFA, we demonstrate the detection of EBOV infection in non-human primates. Our PF-LFA represents an enormous step forward in the development of a robust, field-deployable assay for filoviruses.


Asunto(s)
Ebolavirus , Fiebre Hemorrágica Ebola , Animales , Fiebre Hemorrágica Ebola/diagnóstico , Ebolavirus/genética , Glicoproteínas , Brotes de Enfermedades
3.
CNS Neurosci Ther ; 30(2): e14365, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37485782

RESUMEN

AIMS: To verify the hypothesis that an enriched environment (EE) alleviates sleep deprivation-induced fear memory impairment by modulating the basal forebrain (BF) PIEZO1/calpain/autophagy pathway. METHODS: Eight-week-old male mice were housed in a closed, isolated environment (CE) or an EE, before 6-h total sleep deprivation. Changes in fear memory after sleep deprivation were observed using an inhibitory avoidance test. Alterations in BF PIEZO1/calpain/autophagy signaling were detected. The PIEZO1 agonist Yoda1 or inhibitor GsMTx4, the calpain inhibitor PD151746, and the autophagy inducer rapamycin or inhibitor 3-MA were injected into the bilateral BF to investigate the pathways involved in the memory-maintaining role of EE in sleep-deprived mice. RESULTS: Mice housed in EE performed better than CE mice in short- and long-term fear memory tests after sleep deprivation. Sleep deprivation resulted in increased PIEZO1 expression, full-length tropomyosin receptor kinase B (TrkB-FL) degradation, and autophagy, as reflected by increased LC3 II/I ratio, enhanced p62 degradation, increased TFEB expression and nuclear translocation, and decreased TFEB phosphorylation. These molecular changes were partially reversed by EE treatment. Microinjection of Yoda1 or rapamycin into the bilateral basal forebrain induced excessive autophagy and eliminated the cognition-protective effects of EE. Bilateral basal forebrain microinjection of GsMTx4, PD151746, or 3-MA mimicked the cognitive protective and autophagy inhibitory effects of EE in sleep-deprived mice. CONCLUSIONS: EE combats sleep deprivation-induced fear memory impairments by inhibiting the BF PIEZO1/calpain/autophagy pathway.


Asunto(s)
Acrilatos , Prosencéfalo Basal , Calpaína , Animales , Masculino , Ratones , Autofagia , Prosencéfalo Basal/metabolismo , Calpaína/metabolismo , Miedo , Trastornos de la Memoria/etiología , Trastornos de la Memoria/terapia , Transducción de Señal , Sirolimus/farmacología , Sirolimus/uso terapéutico , Privación de Sueño/complicaciones
4.
Polymers (Basel) ; 15(21)2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37959898

RESUMEN

Fractured reservoirs are widely distributed and rich in hydrocarbon resources. When encountering fractured reservoirs during the drilling process, it is often accompanied by formation losses characterized by high leak-off rates, causing severe damage to the reservoir and hindering the detection of oil and gas layers, which is not conducive to the accurate and efficient development of the reservoirs. Conventional plugging materials have poor retention effects in the fractures, resulting in the low stability of the sealing layer. The treatment of malignant lost circulation in fractured formations is an urgent problem to be solved in drilling engineering. This article focuses on improving the success rate of formation plugging through the combined use of multiple plugging materials and develops a composite hydrogel that can effectively reduce leakage rates. This hydrogel is mainly composed of materials such as polyvinyl alcohol, borax, and sodium silicate. It has good temperature resistance, maintains good gel strength at 60 °C, and can maintain long-term performance stability under simulated geological water conditions with salinity of 12,500 mg/L. For immersion corrosion by water or gasoline, the amount of corrosion is small and its fundamental performance remains largely unchanged. Through indoor simulation of a leak formation scenario, the hydrogel demonstrates commendable sealing pressure-bearing capacity. In terms of delaying fluid leakage, mixing the hydrogel with cement slurry at a ratio of 1:1 can delay the leakage rate of the cement slurry by a factor of 5.29.

5.
J Environ Manage ; 346: 118950, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37696070

RESUMEN

Our paper focuses on how firms strategically respond to environmental regulations on environmental actions. Given the greater discretion in environmental information disclosure and relaxed environmental regulations enforcement in China, we propose that firms tend to say more while do less to obtain environmental legitimacy, namely corporate environmental actions decoupling. Using a sample of 5422 Chinese firm-year observations over the period of 2012-2018, we document that stringent environmental regulations contribute to a significant inconsistency between environmental reporting and actual environmental performance. Moreover, we demonstrate that this inconsistency is exacerbated when firms possess greater bargaining power and fewer financial resources. Our paper not only advances the understanding of how firms navigate external regulations by examining the tradeoffs between symbolic and substantive actions, but also sheds light on factors influencing decoupling/greenwashing practices from the perspective of government-business relations in China, and potentially in other emerging economies.


Asunto(s)
Comercio , Organizaciones , Gobierno , China , Revelación
6.
Nat Biomed Eng ; 7(12): 1556-1570, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36732621

RESUMEN

Lateral-flow assays (LFAs) are rapid and inexpensive, yet they are nearly 1,000-fold less sensitive than laboratory-based tests. Here we show that plasmonically active antibody-conjugated fluorescent gold nanorods can make conventional LFAs ultrasensitive. With sample-to-answer times within 20 min, plasmonically enhanced LFAs read out via a standard benchtop fluorescence scanner attained about 30-fold improvements in dynamic range and in detection limits over 4-h-long gold-standard enzyme-linked immunosorbent assays, and achieved 95% clinical sensitivity and 100% specificity for antibodies in plasma and for antigens in nasopharyngeal swabs from individuals with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Comparable improvements in the assay's performance can also be achieved via an inexpensive portable scanner, as we show for the detection of interleukin-6 in human serum samples and of the nucleocapsid protein of SARS-CoV-2 in nasopharyngeal samples. Plasmonically enhanced LFAs outperform standard laboratory tests in sensitivity, speed, dynamic range, ease of use and cost, and may provide advantages in point-of-care diagnostics.


Asunto(s)
Inmunoconjugados , Nanopartículas , Humanos , SARS-CoV-2 , Ensayo de Inmunoadsorción Enzimática , Anticuerpos , Pruebas en el Punto de Atención
7.
Comput Econ ; 61(4): 1593-1616, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35440845

RESUMEN

With a sample of monthly data from January 2000 to July 2021, this paper investigates the risk connectedness relationship between different kinds of China's EPU and global oil prices in both time and frequency domains. To achieve that, a research framework mainly consists of wavelet transform method and spillover index approach is established. The results show that EPU of China receives the risk spillover from global oil prices in most cases. Moreover, we find fiscal policy uncertainty and trade policy uncertainty are generally the recipients of risk spillover on most time scales, except that monetary policy uncertainty primarily serves as the risk transmitter. Lastly, the risk role of exchange rate policy uncertainty in China has the most frequent change among four kinds of EPU. This paper provides valuable policy implications for policymakers, investors and risk managers in the energy market.

8.
Front Immunol ; 13: 927213, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36110845

RESUMEN

Recently, Toll-like receptors (TLRs) have been extensively studied in radiation damage, but the inherent defects of high toxicity and low efficacy of most TLR ligands limit their further clinical transformation. CRX-527, as a TLR4 ligand, has rarely been reported to protect against radiation. We demonstrated that CRX-527 was safer than LPS at the same dose in vivo and had almost no toxic effect in vitro. Administration of CRX-527 improved the survival rate of total body irradiation (TBI) to 100% in wild-type mice but not in TLR4-/- mice. After TBI, hematopoietic system damage was significantly alleviated, and the recovery period was accelerated in CRX-527-treated mice. Moreover, CRX-527 induced differentiation of HSCs and the stimulation of CRX-527 significantly increased the proportion and number of LSK cells and promoted their differentiation into macrophages, activating immune defense. Furthermore, we proposed an immune defense role for hematopoietic differentiation in the protection against intestinal radiation damage, and confirmed that macrophages invaded the intestines through peripheral blood to protect them from radiation damage. Meanwhile, CRX-527 maintained intestinal function and homeostasis, promoted the regeneration of intestinal stem cells, and protected intestinal injury from lethal dose irradiation. Furthermore, After the use of mice, we found that CRX-527 had no significant protective effect on the hematopoietic and intestinal systems of irradiated TLR4-/- mice. in conclusion, CRX-527 induced differentiation of HSCs protecting the intestinal epithelium from radiation damage.


Asunto(s)
Células Madre Hematopoyéticas , Compuestos Organofosforados , Traumatismos Experimentales por Radiación , Receptor Toll-Like 4 , Animales , Apoptosis , Diferenciación Celular , Glucosamina/análogos & derivados , Glucosamina/farmacología , Células Madre Hematopoyéticas/citología , Mucosa Intestinal , Ligandos , Lipopolisacáridos/farmacología , Ratones , Compuestos Organofosforados/farmacología , Traumatismos Experimentales por Radiación/prevención & control , Receptor Toll-Like 4/genética
9.
Dose Response ; 20(3): 15593258221113791, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35859853

RESUMEN

Radiation-induced intestinal injury (RIII) restricts the therapeutic efficacy of radiotherapy in abdominal or pelvic malignancies. Also, intestinal injury is a major cause of death following exposure to high doses of radiation in nuclear accidents. No safe and effective prophylactics or therapeutics for RIII are currently available. Here, we reported that the apigenin, a natural dietary flavone, prolonged the survival in c57 mice after lethal irradiation. Apigenin pretreatment brought about accelerated restoration of crypt-villus structure, including enhanced regenerated crypts, more differentiated epithelium cells, and increased villus length. In addition, intestinal crypt cells in the apigenin-treated group exhibited more proliferation and less apoptosis. Furthermore, apigenin increased the expression of Nrf2 and its downstream target gene HO-1, and decreased oxidative stress after irradiation. In conclusion, our findings demonstrate the radioprotective efficacy of apigenin. Apigenin has the potential to be used as a radioprotectant in cancer therapy and nuclear accidents.

10.
Oxid Med Cell Longev ; 2022: 9137812, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35770047

RESUMEN

The testis is susceptible to ionizing radiation, and male infertility and sexual dysfunction are prevalent problems after whole-body or local radiation exposure. Currently, there is no approved agent for the prevention or treatment of radiation-induced testicular injury. Herein, we investigated the radioprotective effect of dimethyl sulfoxide (DMSO), an organosulfur compound that acts as a free radical scavenger, on testicular injury. Treatment of mice with a single dose of DMSO prior to 5 Gy irradiation restored sex hormones and attenuated the reduction in testis weight. Histological analyses revealed that DMSO alleviated the distorted architecture of seminiferous tubules and promoted seminiferous epithelium regeneration following irradiation. Moreover, DMSO provided quantitative and qualitative protection for sperm and preserved spermatogenesis and fertility in male mice. Mechanistically, DMSO treatment enhanced GFRα-1+ spermatogonial stem cell and c-Kit+ spermatogonial survival and regeneration after radiation. DMSO also alleviated radiation-induced oxidative stress and suppressed radiation-induced germ cell apoptosis in vivo and in vitro. Additionally, DMSO efficiently reduced DNA damage accumulation and induced the expression of phosph-BRCA1, BRCA1, and RAD51 proteins, indicating that DMSO facilitates DNA damage repair with a bias toward homologous recombination. In summary, our findings demonstrate the radioprotective efficacy of DMSO on the male reproductive system, which warrants further studies for future application in the preservation of male fertility during conventional radiotherapy and nuclear accidents.


Asunto(s)
Traumatismos por Radiación , Protectores contra Radiación , Enfermedades Testiculares , Animales , ADN , Dimetilsulfóxido/farmacología , Humanos , Masculino , Ratones , Traumatismos por Radiación/tratamiento farmacológico , Traumatismos por Radiación/prevención & control , Protectores contra Radiación/farmacología , Semen , Espermatogénesis , Enfermedades Testiculares/tratamiento farmacológico , Testículo
11.
Biomater Res ; 26(1): 20, 2022 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-35619159

RESUMEN

OBJECTIVE: This study aimed to reveal the protective effect of hydrogen storage nanomaterial MgH2 on radiation-induced male fertility impairment. METHODS: The characterization of MgH2 were analyzed by scanning electron microscopy (SEM) and particle size analyzer. The safety of MgH2 were evaluated in vivo and in vitro. The radioprotective effect of MgH2 on the reproductive system were analyzed in mice, including sperm quality, genetic effect, spermatogenesis, and hormone secretion. ESR, flow cytometry and western blotting assay were used to reveal the underlying mechanisms. RESULTS: MgH2 had an irregular spherical morphology and a particle size of approximately 463.2 nm, and the content of Mg reached 71.46%. MgH2 was safe and nontoxic in mice and cells. After irradiation, MgH2 treatment significantly protected testicular structure, increased sperm density, improved sperm motility, reduced deformity rates, and reduced the genetic toxicity. Particularly, the sperm motility were consistent with those in MH mice and human semen samples. Furthermore, MgH2 treatment could maintain hormone secretion and testicular spermatogenesis, especially the generation of Sertoli cells, spermatogonia and round sperm cells. In vitro, MgH2 eliminated the [·OH], suppressed the irradiation-induced increase in ROS production, and effectively alleviated the increase in MDA contents. Moreover, MgH2 significantly ameliorated apoptosis in testes and cells and reversed the G2/M phase cell cycle arrest induced by irradiation. In addition, MgH2 inhibited the activation of radiation-induced inflammation and pyroptosis. CONCLUSION: MgH2 improved irradiation-induced male fertility impairment by eliminating hydroxyl free radicals. Mice fertility and function were evaluated with or without MgH2 treatment after 5 Gy irradiation. MgH2 had the ability of hydroxyl radicals scavenging and MDA suppressing in testicular tissue induced by irradiation. Further, MgH2 could participate in spermatogenesis and protect sperm development in three stages: the generation of Sertoli cells (Sox-9+), spermatogonia (Stra8+) and round sperm cells (Crem+). Moreover, MgH2 alleviated the decrease of testosterone secreted by interstitial cells after irradiation. In addition, MgH2 suppressed apoptosis, pyroptosis and inflammatory response and alleviated cell cycle arrest by mediating IR-induced ROS.

12.
Front Pharmacol ; 13: 852669, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35517788

RESUMEN

Radiation-induced intestinal injury (RIII) occurs after high doses of radiation exposure. RIII restricts the therapeutic efficacy of radiotherapy in cancer and increases morbidity and mortality in nuclear disasters. Currently, there is no approved agent for the prevention or treatment of RIII. Here, we reported that the disulfiram, an FDA-approved alcohol deterrent, prolonged the survival in mice after lethal irradiation. Pretreatment with disulfiram inhibited proliferation within 24 h after irradiation, but improved crypt regeneration at 3.5 days post-irradiation. Mechanistically, disulfiram promoted Lgr5+ intestinal stem cells (ISCs) survival and maintained their ability to regenerate intestinal epithelium after radiation. Moreover, disulfiram suppresses DNA damage accumulation, thus inhibits aberrant mitosis after radiation. Unexpectedly, disulfiram treatment did not inhibit crypt cell apoptosis 4 h after radiation and the regeneration of crypts from PUMA-deficient mice after irradiation was also promoted by disulfiram. In conclusion, our findings demonstrate that disulfiram regulates the DNA damage response and survival of ISCs through affecting the cell cycle. Given its radioprotective efficacy and decades of application in humans, disulfiram is a promising candidate to prevent RIII in cancer therapy and nuclear accident.

13.
Biomater Sci ; 10(12): 3309-3322, 2022 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35588192

RESUMEN

Radiotherapy of abdominal and pelvic tumors almost inevitably injures the intestine by oxidative stress and causes inflammation. Regrettably, traditional radioprotective agents for irradiation (IR) induced intestinal injury suffer from challenges such as poor solubility, unsatisfactory bioactivity and undesired adverse reactions, which significantly limit their usefulness. Polydopamine nanoparticles (PDA-NPs) have shown promising potential in scavenging reactive oxygen species (ROS) and suppressing inflammation. In this study, PDA-NPs were prepared by a simple method and their physical properties were characterized. Mice received two doses of PDA-NPs by oral gavage 22 h apart, and were irradiated with X-rays 2 h after the last gavage. The protective effect of PDA-NPs and possible mechanisms of protection against IR-induced intestinal injury were explored. The results showed that PDA-NPs were spherical and well dispersed, with good shape uniformity, compact structure, good colloid dispersion stability, concentration-dependent light absorption, and accurate quantification. Importantly, PDA-NPs reduced mortality and prolonged the average survival time of mice after IR. Furthermore, PDA-NPs protected mice from IR-induced injury to crypt-villus units and maintained intestinal barrier function in the intestine. In particular, PDA-NPs significantly inhibited the depletion of Lgr5+ intestinal stem cells (ISCs) and promoted cell regeneration after IR, which indicated that the regeneration ability of ISCs was maintained and the repair of intestinal structure and function was promoted. Finally, PDA-NPs significantly suppressed the apoptosis, inflammatory pyroptosis and DNA damage of intestinal cells induced by ionizing radiation. Altogether, our study suggested that PDA-NPs may have great potential in protecting the intestines from ionizing radiation damage.


Asunto(s)
Dopamina , Nanopartículas , Animales , Dopamina/farmacología , Homeostasis , Inflamación , Intestinos , Ratones , Nanopartículas/química
14.
Biosens Bioelectron ; 200: 113918, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-34990957

RESUMEN

Novel methods that enable facile, ultrasensitive and multiplexed detection of low molecular weight organic compounds such as metabolites, drugs, additives, and organic pollutants are valuable in biomedical research, clinical diagnosis, food safety and environmental monitoring. Here, we demonstrate a simple, rapid, and ultrasensitive method for detection and quantification of small molecules by implementing a competitive immunoassay with an ultrabright fluorescent nanolabel, plasmonic fluor. Plasmonic-fluor is comprised of a polymer-coated gold nanorod and bovine serum albumin conjugated with molecular fluorophores and biotin. The synthesis steps and fluorescence emission of plasmonic-fluor was characterized by UV-vis spectroscopy, transmission electron microscopy, and fluorescence microscopy. Plasmon-enhanced competitive assay can be completed within 20 min and exhibited more than 30-fold lower limit-of-detection for cortisol compared to conventional competitive ELISA. The plasmon-enhanced competitive immunoassay when implemented as partition-free digital assay enabled further improvement in sensitivity. Further, spatially multiplexed plasmon-enhanced competitive assay enabled the simultaneous detection of two analytes (cortisol and fluorescein). This simple, rapid, and ultrasensitive method can be broadly employed for multiplexed detection of various small molecules in research, in-field and clinical settings.


Asunto(s)
Técnicas Biosensibles , Nanotubos , Bioensayo , Oro , Inmunoensayo
15.
Environ Sci Pollut Res Int ; 29(8): 11255-11266, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34535861

RESUMEN

With the monthly data of WTI oil price and economic policy uncertainty (EPU) of China from January 2000 to August 2020, this paper detailedly investigates the asymmetric volatility correlations between two types of EPU of China and global oil price in different time scales. The empirical results demonstrate that the volatility correlation between EPU of China and West Texas Intermediate (WTI) oil price is mainly reflected in the monetary policy uncertainty (MPU), while that of fiscal policy uncertainty (FPU) is much weaker. Specifically speaking, the volatility correlation between MPU of China and downward WTI oil price is significantly negative in the short-middle term (4-8 months) and changes to positive in the middle-long term (8-16 months), while that of upward WTI oil price is only significantly positive in the long term (16-32 months). Our findings provide a deeper understanding of the oil price-EPU correlation in China, and can be valuable guidance for diversified market participants such as government policy-makers and global investors.


Asunto(s)
Desarrollo Económico , Petróleo/economía , China , Comercio , Incertidumbre
16.
Int J Hyperthermia ; 38(1): 1037-1051, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34233564

RESUMEN

BACKGROUND: Thermal ablation is a potentially curative therapy for early-stage non-small cell lung cancer (NSCLC). Early recurrence after thermal ablation necessitates our attention. METHODS: The invasion and migration abilities of NSCLC after sublethal heat stimulus were observed in vitro and in vivo. Sublethal thermal stimulus molecular changes were identified by RNA sequencing. A xenograft model of NSCLC with insufficient ablation was established to explore the epithelial-to-mesenchymal transition (EMT) and metastasis-related phenotypes alteration of residual tumors. RESULTS: In vitro, the invasion and migration abilities of NSCLC cells were enhanced 72 h after 44 °C and 46 °C thermal stimulus. Epithelial-mesenchymal transition (EMT) phenotypes were also upregulated under these conditions. RNA sequencing revealed that the expression of carboxypeptidase A4 (CPA4) was significantly upregulated after thermal stimulus. Significant upregulation of CPA4 and EMT phenotypes was also found in the xenograft model of insufficient NSCLC ablation. The EMT process and invasion and migration abilities can be reversed by silencing CPA4. CONCLUSIONS: This study demonstrates that sublethal heat stimulus caused by insufficient ablation can promote EMT and enhance the metastatic capacity of NSCLC. CPA4 plays an important role in these biological processes. Inhibition of CPA4 might be of great significance for improving early-stage NSCLC survival after ablation.


Asunto(s)
Carboxipeptidasas A/metabolismo , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Carboxipeptidasas , Carcinoma de Pulmón de Células no Pequeñas/genética , Línea Celular Tumoral , Proliferación Celular , Transición Epitelial-Mesenquimal , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Pulmonares/genética
17.
ACS Appl Mater Interfaces ; 13(9): 11414-11423, 2021 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-33620204

RESUMEN

Plasmon-enhanced fluorescence (PEF) is a simple and highly effective approach for improving the signal-to-noise ratio and sensitivity of various fluorescence-based bioanalytical techniques. Here, we show that the fluorescence enhancement efficacy of gold nanorods (AuNRs), which are widely employed for PEF, is highly dependent on their absolute dimensions (i.e., length and diameter). Notably, an increase in the dimensions (length × diameter) of the AuNRs from 46 × 14 to 120 × 38 nm2 while holding the aspect ratio constant leads to nearly 300% improvement in fluorescence enhancement efficiency. Further increase in the AuNR size leads to a decrease of the fluorescence enhancement efficiency. Through finite-difference time-domain (FDTD) simulation, we reveal that the size-dependent fluorescence enhancement efficiency of AuNR stems from the size-dependent electromagnetic field around the plasmonic nanostructures. AuNRs with optimal dimensions resulted in a nearly 120-fold enhancement in the ensemble fluorescence emission from molecular fluorophores bound to the surface. These plasmonic nanostructures with optimal dimensions also resulted in a nearly 30-fold improvement in the limit of detection of human interleukin-6 (IL-6) compared to AuNRs with smaller size, which are routinely employed in PEF.


Asunto(s)
Colorantes Fluorescentes/química , Interleucina-6/análisis , Nanotubos/química , Anticuerpos Inmovilizados/inmunología , Fluorescencia , Fluoroinmunoensayo/métodos , Oro/química , Humanos , Interleucina-6/inmunología , Tamaño de la Partícula , Resonancia por Plasmón de Superficie
18.
Nat Biomed Eng ; 5(1): 64-76, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33483710

RESUMEN

The detection and quantification of protein biomarkers in interstitial fluid is hampered by challenges in its sampling and analysis. Here we report the use of a microneedle patch for fast in vivo sampling and on-needle quantification of target protein biomarkers in interstitial fluid. We used plasmonic fluor-an ultrabright fluorescent label-to improve the limit of detection of various interstitial fluid protein biomarkers by nearly 800-fold compared with conventional fluorophores, and a magnetic backing layer to implement conventional immunoassay procedures on the patch and thus improve measurement consistency. We used the microneedle patch in mice for minimally invasive evaluation of the efficiency of a cocaine vaccine, for longitudinal monitoring of the levels of inflammatory biomarkers, and for efficient sampling of the calvarial periosteum-a challenging site for biomarker detection-and the quantification of its levels of the matricellular protein periostin, which cannot be accurately inferred from blood or other systemic biofluids. Microneedle patches for the minimally invasive collection and analysis of biomarkers in interstitial fluid might facilitate point-of-care diagnostics and longitudinal monitoring.


Asunto(s)
Biomarcadores/análisis , Líquido Extracelular/química , Microtecnología/instrumentación , Agujas , Animales , Cocaína/análisis , Citocinas/análisis , Diseño de Equipo , Femenino , Colorantes Fluorescentes/química , Técnicas de Inmunoadsorción/instrumentación , Límite de Detección , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL
19.
Oncol Lett ; 20(5): 236, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32968458

RESUMEN

Serum microRNAs (miRNAs) have been implicated as noninvasive biomarkers for lung cancer diagnosis. However, there are no sensitive and specific biomarkers for the detection of radiotherapy-related non-small cell lung cancer (NSCLC) metastasis. The present study aimed to investigate the role of three serum miRNAs, namely miRNA (miR)-130a, miR-25 and miR-191*, in diagnosing NSCLC, and their biological functions in radiation-mediated development of metastatic properties in A549 cells. To determine this, serum samples were collected from 84 patients with NSCLC and 42 age- and sex-matched healthy controls. Differential expression of serum miRNAs was analyzed by quantitative PCR. Significant associations between miRNA expression and overall survival of patients with NSCLC were identified using the Cox proportional regression model. A receiver operating characteristic curve was generated to evaluate diagnostic accuracy. The functions of miR-130a, miR-25 and miR-191* in lung cancer cells were studied by transfecting A549 cells with miRNA mimics and inhibitors. The results of the present study demonstrated that the expression levels of miR-130a, miR-25 and miR-191* in the serum of patients with NSCLC were increased compared with those in healthy controls, and these increases were associated with advanced age (≥60 years), radiotherapy, histological type (squamous carcinoma), low survival rate and low median survival time. Additionally, irradiation induced the upregulation of miR-130a, miR-25 and miR-191* expression in A549 cells in vitro and in a xenograft mouse model. Irradiation also promoted the invasiveness of A549 cells in vitro and metastasis in vivo. In conclusion, miR-130a, miR-25 and miR-191* may be potential biomarkers for the diagnosis of patients with NSCLC and may serve oncogenic roles in radiation-mediated metastasis of NSCLC.

20.
Toxicol Lett ; 334: 4-13, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-32949624

RESUMEN

Radon exposure is the most frequent cause of lung cancer in non-smokers. The high linear energy transfer alpha-particles from radon decay cause the accumulation of multiple genetic changes and lead to cancer development. Epithelial-mesenchymal transition (EMT) plays an important role in oncogenesis. However, the mechanisms underlying chronic radon exposure-induced EMT attributed to carcinogenesis are not understood. This study aimed to explore the EMT and potential molecular mechanisms induced by repeated radon exposure. The EMT model of 16HBE and BEAS-2B cells was established with radon exposure (20000 Bq/m3, 20 min each time every 3 days). We found repeated radon exposure facilitated epithelial cell migration, proliferation, reduced cell adhesion and ability to undergo EMT through a decrease in epithelial markers and an increase in mesenchymal markers. Radon regulated the expression of matrix metalloproteinase 2 (MMP2) and tissue inhibitors of metalloproteinase 2 (TIMP2) to disrupt the balance of MMP2/TIMP2. In vivo, BALB/c mice were exposed to 105 Bq/m3 radon gas for cumulative doses of 60 and 120 Working Level Months (WLM). Radon inhalation caused lung damage and fibrosis in mice, which was aggravated with the increase of exposure dose. EMT-like transformation also occurred in lung tissues of radon-exposure mice. Moreover, radon radiation increased p-PI3K, p-AKT and p-mTOR in cells and mice. Radon reduced the GSK-3ß level and elevated the active ß-catenin in 16HBE cells. The m-TOR and AKT inhibitors attenuated radon exposure-induced EMT by regulation related biomarkers. These data demonstrated that radon exposure induced EMT through the PI3K/AKT/mTOR pathway in epithelial cells and lung tissue.


Asunto(s)
Contaminantes Radiactivos del Aire/toxicidad , Células Epiteliales/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Lesión Pulmonar/inducido químicamente , Pulmón , Radón/toxicidad , Animales , Línea Celular , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta en la Radiación , Humanos , Exposición por Inhalación/efectos adversos , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Pulmón/patología , Lesión Pulmonar/metabolismo , Lesión Pulmonar/patología , Ratones , Ratones Endogámicos BALB C , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Hijas del Radón/toxicidad , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...