Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 3838, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714685

RESUMEN

The powerful capability of reconfigurable intelligent surfaces (RISs) in tailoring electromagnetic waves and fields has put them under the spotlight in wireless communications. However, the current designs are criticized due to their poor frequency selectivity, which hinders their applications in real-world scenarios where the spectrum is becoming increasingly congested. Here we propose a filtering RIS to feature sharp frequency-selecting and 2-bit phase-shifting properties. It permits the signals in a narrow bandwidth to transmit but rejects the out-of-band ones; meanwhile, the phase of the transmitted signals can be digitally controlled, enabling flexible manipulations of signal propagations. A prototype is designed, fabricated, and measured, and its high quality factor and phase-shifting characteristics are validated by scattering parameters and beam-steering phenomena. Further, we conduct a wireless communication experiment to illustrate the intriguing functions of the RIS. The filtering behavior enables the RIS to perform wireless signal manipulations with anti-interference ability, thus showing big potential to advance the development of next-generation wireless communications.

2.
Adv Sci (Weinh) ; 11(7): e2306181, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38064159

RESUMEN

Due to its ability to adapt to a variety of electromagnetic (EM) environments, the sensing-enabled metasurface has garnered significant attention. However, large-scale EM-field sensing to obtain more information is still very challenging. Here, an adaptive information metasurface is proposed to enable intelligent sensing and wave manipulating simultaneously or more specifically, to realize intelligent target localization and beam tracking adaptively. The metasurface is composed of an array of meta-atoms, and each is loaded with two PIN diodes and a sensing-channel structure, for polarization-insensitive and programmable beamforming and sensing. By controlling the state of the PIN diode, the proposed meta-atom has 1-bit phase response in the designed frequency band, while the sensing loss keeps higher than -10 dB for both "ON" and "OFF" states. Hence there is nearly no interaction between the beamforming and sensing modes. Experiments are conducted to show multiple functions of the metasurface, including intelligent target sensing and self-adaptive beamforming, and the measured results are in good agreement with the numerical simulations and theoretical calculations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA