Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Heliyon ; 10(7): e28807, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38576560

Curcumin and exercise have been reported to show good anti-tumour effects. However, relevant research on the combined effects of physical exercise and curcumin supplementation on cancer and the underlying mechanisms is still lacking. The current study aimed to construct an anti-breast tumour mouse model using the combined effects of curcumin treatment and swimming exercise. Transcriptomic and metabolomic techniques were used to screen for differentially expressed genes and metabolites, evaluate the anticancer effects, and analyse the molecular regulatory mechanisms related to metabolism. Observation of the mouse phenotypes, including tumour appearance, in-vivo tumour imaging, and HE staining results of pathological sections, suggested a more obvious inhibitory effect of the combination of curcumin administration and exercise intervention on breast cancer than that of a single treatment. The combination treatment group had a total of 445 differentially expressed (154 upregulated and 291 downregulated) genes. Functional enrichment analysis showed the calcium signalling pathway, Wnt signalling pathway, PI3K Akt signalling pathway, and IL-17 signalling pathway to significantly participate in the anti-breast cancer process of curcumin-exercise combination treatment. Results of the intergroup differential metabolite analysis showed that the combined effect of curcumin and exercise involves two unique pathways, namely the amino sugar and nucleotide sugar metabolism, which includes chitosan, d-glucosamine 6-phosphate, l-fucose, and N-acetyl beta-mannosamine, and the amino acid biosynthesis, which includes dl-isoleucine, dl-tyrosine, and homocysteine. Collectively, the top-ranked genes and metabolites with the highest degree of associations were further revealed by O2PLS analysis. Overall, the study helped reveal the mechanism of action of curcumin-exercise combination treatment on breast cancer at multi-omics level.

2.
Heliyon ; 10(5): e27028, 2024 Mar 15.
Article En | MEDLINE | ID: mdl-38449659

The therapeutic mechanism of oleanolic acid (OA) in breast cancer has been widely reported, but little has been known about the combined effects of transcriptome and gut microbiome. In this study, the phenotypic effect of oleanolic acid on mice was tested at the end of the administration cycle, and RNA sequencing on murine tumor tissue and 16S-rRNA sequencing on intestinal contents were conducted to analyze gene expression profiles and microbial diversity between the control group and OA treated group using 4T1-induced mice breast cancer model. As a result, it has been confirmed that oleanolic acid would play a significant inhibitory effect on the development of breast tumors in mice. Based on the integrative analysis of the transcriptomic and metagenomic data, it was found that the abundance of Lactobacillus in the intestinal flora of mice significantly increased in the OA group. Moreover, the up-regulation of Il10 had a significant effect on inhibiting the tumor progression, which played a role through cytokine-cytokine receptor interaction pathway.

3.
J Agric Food Chem ; 71(50): 20386-20401, 2023 Dec 20.
Article En | MEDLINE | ID: mdl-38055355

Our previous study showed that as a substitute for statins, selenium-enriched kiwifruit (Se-Kiwi) might reduce blood lipids and protect the liver in Kunming mice, but the underlying mechanism remains unclear. Metabolic regulation of mammalian intestinal microflora plays an important role in obesity and related diseases induced by a high-fat diet (HFD). Here, samples of serum, liver, colon, and fresh feces from the Se-Kiwi-treated hyperlipidemia C57BL/6J mouse model were collected. Based on metabolome (UHPLC-Q-TOF MS) and gut microbiome (16S rDNA) analyses as well as the integrative analysis of physiological and biochemical indices and pathological data of mice, we aimed to systematically illustrate the gut microbiome and metabolomics mechanism of Se-Kiwi in HFD-induced hyperlipidemic mice. As a result, Se-Kiwi can significantly increase the abundance of potentially beneficial gut bacteria such as Parabacteroides, Bacteroides, and Allobaculum in the colon and improve hyperlipidemia by regulating the digestion and absorption of vitamins, pyrimidine metabolism, purine metabolism, and other metabolic pathways, which have been confirmed by the following fecal microbiota transplantation experiment. This process was significantly regulated by the Ada, Gda, Pank1, Ppara, Pparg, and Cd36 genes. These findings may provide a theoretical basis for the research and development of selenium-enriched functional foods in the treatment of hyperlipidemia.


Gastrointestinal Microbiome , Hyperlipidemias , Selenium , Mice , Animals , Diet, High-Fat/adverse effects , Hyperlipidemias/drug therapy , Hyperlipidemias/etiology , Mice, Inbred C57BL , Metabolomics , Lipid Metabolism , Mammals
...