Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 44
1.
Cancer Chemother Pharmacol ; 93(5): 411-425, 2024 May.
Article En | MEDLINE | ID: mdl-38191768

BACKGROUND: Artemisinin (ART) and its derivatives are important antimalaria agents and have received increased attention due to their broad biomedical effects, such as anticancer and anti-inflammation activities. Recently, ruthenium-derived complexes have attracted considerable attention as their anticancer potentials were observed in preclinical and clinical studies. METHODS: To explore an innovative approach in colorectal cancer (CRC) management, we synthesized ruthenium-dihydroartemisinin complex (D-Ru), a novel metal-based artemisinin derivative molecule, and investigated its anticancer, anti-inflammation, and adaptive immune regulatory properties. RESULTS: Compared with its parent compound, ART, D-Ru showed stronger antiproliferative effects on the human CRC cell lines HCT-116 and HT-29. The cancer cell inhibition of D-Ru comprised G1 cell cycle arrest via the downregulation of cyclin A and the induction of apoptosis. ART and D-Ru downregulated the expressions of pro-inflammatory cytokines IL-1ß, IL-6, and IL-8. Although ART and D-Ru did not suppress Treg cell differentiation, they significantly inhibited Th1 and Th17 cell differentiation. CONCLUSIONS: Our results demonstrated that D-Ru, a novel ruthenium complexation of ART, remarkably enhanced its parent compound's anticancer action, while the anti-inflammatory potential was not compromised. The molecular mechanisms of action of D-Ru include inhibition of cancer cell growth via cell cycle arrest, induction of apoptosis, and anti-inflammation via regulation of adaptive immunity.


Apoptosis , Artemisinins , Colonic Neoplasms , G1 Phase Cell Cycle Checkpoints , Humans , Artemisinins/pharmacology , Artemisinins/chemistry , Apoptosis/drug effects , Colonic Neoplasms/pathology , Colonic Neoplasms/drug therapy , Colonic Neoplasms/immunology , G1 Phase Cell Cycle Checkpoints/drug effects , Cell Proliferation/drug effects , Adaptive Immunity/drug effects , Ruthenium/chemistry , Ruthenium/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , HCT116 Cells , HT29 Cells , Animals , Cytokines/metabolism , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Mice
3.
Biomed Pharmacother ; 148: 112742, 2022 Apr.
Article En | MEDLINE | ID: mdl-35228063

The activation of artemisinin and its derivatives (ARTs) to generate ROS and other free radicals is mainly heme- or ferrous iron-dependent. ARTs induce ferroptosis in tumor cells, although the involvement of ferroptosis in malaria remains unclear. We found that three typical inducers of ferroptosis (erastin, RSL3 and sorafenib) could effectively mimic DHA inhibition on the growth of blood-stage parasites, which exhibited synergistic or nearly additive interactions in vitro with DHA, while the combination of DHA with ferroptosis inhibitors (deferoxamine, liproxstatin-1) had an obvious antagonistic effect. DHA, similar to ferroptosis inducers, can simultaneously induce the accumulation of ferroptosis-associated cellular labile iron and lipid peroxide. However, deferoxamine and liproxstatin-1 reduced the increase in ferrous iron and lipid peroxide caused by DHA. These results suggested that ferroptosis might be an effective way to induce cell death in parasites and could be a primary mechanism by which DHA kills parasites, with almost 50% contribution at low concentrations. These results provide a new strategy for antimalarial drug screening and clinical medication guidance.


Antimalarials/pharmacology , Artemisinins/pharmacology , Ferroptosis/drug effects , Malaria/drug therapy , Animals , Cell Death/drug effects , Female , Humans , Malaria/metabolism , Malaria/parasitology , Mice , Mice, Inbred C57BL , Parasites/drug effects , Piperazines/pharmacology , Reactive Oxygen Species/metabolism , Sorafenib/pharmacology
4.
Mol Biol Rep ; 49(4): 2695-2709, 2022 Apr.
Article En | MEDLINE | ID: mdl-35040004

BACKGROUND: Artemisinin (ART) is an anti-malaria natural compound with a moderate anticancer action. As a metabolite of ART, dihydroartemisinin (DHA) may have stronger anti-colorectal cancer (CRC) bioactivities. However, the effects of DHA and ART on CRC chemoprevention, including adaptive immune regulation, have not been systematically evaluated and compared. METHODS: Coupled with a newly-established HPLC analytical method, enteric microbiome biotransformation was conducted to identify if the DHA is a gut microbial metabolite of ART. The anti-CRC potential of these compounds was compared using two different human CRC cell lines for cell cycle arrest, apoptotic induction, and anti-inflammation activities. Naive CD4+ T cells were also obtained for testing the compounds on the differentiation of Treg, Th1 and Th17. RESULTS: Using compound extraction and analytical methods, we observed for the first time that ART completely converted into its metabolites by gut microbiome within 24 h, but no DHA was detected. Although ART did not obviously influence cancer cell growth in the concentration tested, DHA very significantly inhibited the cancer cell growth at relatively low concentrations. DHA included G2/M cell cycle arrest via upregulation of cyclin A and apoptosis. Both ART and DHA downregulated the pro-inflammatory cytokine expression. The DHA significantly promoted Treg cell proliferation, while both ART and DHA inhibited Th1 and Th17 cell differentiation. CONCLUSIONS: As a metabolite of ART, DHA possessed stronger anti-CRC activities. The DHA significantly inhibited cell growth via cell cycle arrest, apoptosis induction and anti-inflammation actions. The adaptive immune regulation is a related mechanism of actions for the observed effects.


Artemisinins , Colonic Neoplasms , Apoptosis , Artemisinins/pharmacology , Chemoprevention , Colonic Neoplasms/drug therapy , Colonic Neoplasms/prevention & control , Humans
5.
J Pharmacol Sci ; 148(1): 73-85, 2022 Jan.
Article En | MEDLINE | ID: mdl-34924133

Although sorafenib (Sora) shows improved efficacy in clinical liver cancer therapy, its therapeutic efficacy is still greatly limited due to side effects as well as drug resistance. Thus new drug intervention strategies are imperative. Our research showed the combined application of Dihydroartemisinin (DHA) and Sora had a synergistic inhibitory effect on HepG2 and SW480 cells, and DHA enhanced Sora efficacy on xenograft tumor in nude mice. DHA and Sora significantly inhibited the cell energy metabolism by decreasing the ATP synthesis rate of oxidative phosphorylation and glycolysis rate, and induced ferroptosis by increasing the level of lipid reactive oxygen species (L-ROS), labile iron pool (LIP) as well as malondialdehyde (MDA) and decreasing the level of glutathione (GSH) in HepG2 cells. In addition, DHA and Sora significantly decreased the levels of SLC7A11 (xCT), GCLC, GPX4, and HO-1 protein in HepG2 cells. Importantly, the above-mentioned indicators changed more significantly after the combined application of DHA and Sora as compared with Sora. In conclusion, DHA and Sora had the same mechanism, and the combined application of them could have a synergistic anti-tumor effect by inducing ferroptosis and inhibiting energy metabolism in HepG2 cells.


Antineoplastic Agents/pharmacology , Artemisinins/pharmacology , Energy Metabolism/drug effects , Ferroptosis/drug effects , Sorafenib/pharmacology , Animals , Antineoplastic Agents/therapeutic use , Artemisinins/therapeutic use , Depression, Chemical , Drug Synergism , Drug Therapy, Combination , Female , Hep G2 Cells , Humans , Liver Neoplasms/drug therapy , Mice, Inbred BALB C , Mice, Nude , Neoplasm Transplantation
6.
Zhongguo Zhong Yao Za Zhi ; 46(18): 4849-4864, 2021 Sep.
Article Zh | MEDLINE | ID: mdl-34581097

As a unicellular organism, Plasmodium displays a panoply of lipid metabolism pathways that are seldom found together in a unicellular organism. These pathways mostly involve the Plasmodium-encoded enzymatic machinery and meet the requirements of membrane synthesis during the rapid cell growth and division throughout the life cycle. Different lipids have varied synthesis and meta-bolism pathways. For example, the major phospholipids are synthesized via CDP-diacylglycerol-dependent pathway in prokaryotes and de novo pathway in eukaryotes, and fatty acids are synthesized mainly via type Ⅱ fatty acid synthesis pathway. The available studies have demonstrated the impacts of artemisinin and its derivatives, the front-line compounds against malaria, on the lipid metabolism of Plasmodium. Therefore, this article reviewed the known lipid metabolism pathways and the effects of artemisinin and its derivatives on these pathways, aiming to deepen the understanding of lipid synthesis and metabolism in Plasmodium and provide a theoretical basis for the research on the mechanisms and drug resistance of artemisinin and other anti-malarial drugs.


Antimalarials , Artemisinins , Malaria , Plasmodium , Antimalarials/pharmacology , Artemisinins/pharmacology , Artemisinins/therapeutic use , Humans , Lipid Metabolism , Malaria/drug therapy
7.
Nat Prod Rep ; 38(7): 1243-1250, 2021 07 21.
Article En | MEDLINE | ID: mdl-34287440

Covering: Up to 2020 Artemisinin has made a significant contribution towards global malaria control since its initial discovery. Countless lives have been saved by this unique and miraculous molecule. In 2006, artemisinin-based combination therapies (ACTs) were recommended by the World Health Organization (WHO) as the first-line treatment for uncomplicated malaria infection and have since remained as the mainstays of the antimalarial treatment. Even so, substantial efforts to pursue better curative effects for the treatment of malaria have never ceased, particularly with regards to the circumstances surrounding the appearance of delayed clearance of malaria parasites by 3 day ACT treatments in South-East Asian countries. Strategies to further optimize artemisinin-based therapies, including synthesizing better artemisinin derivatives, developing advanced drug delivery systems, and diversifying artemisinin partner drugs, have been proposed over the past few years. Here, we provide an updated account of the continuous efforts in improving ACTs for better efficacy in curing malarial infection.


Antimalarials/therapeutic use , Artemisinins/therapeutic use , Malaria/drug therapy , Drug Delivery Systems , Drug Therapy, Combination , Humans , Molecular Structure
8.
Malar J ; 20(1): 249, 2021 Jun 06.
Article En | MEDLINE | ID: mdl-34090420

BACKGROUND: Malaria is a fatal disease that presents clinically as a continuum of symptoms and severity, which are determined by complex host-parasite interactions. Clearance of infection is believed to be accomplished by the spleen and mononuclear phagocytic system (MPS), independent of artemisinin treatment. The spleen filters infected red blood cells (RBCs) from circulation through immune-mediated recognition of the infected RBCs followed by phagocytosis. This study evaluated the tolerance of four different strains of mice to Plasmodium berghei strain K173 (P. berghei K173), and the differences in the role of the spleen in controlling P. berghei K173 infection. METHODS: Using different strains of mice (C57BL/6, BALB/C, ICR, and KM mice) infected with P. berghei K173, the mechanisms leading to splenomegaly, histopathology, splenocyte activation and proliferation, and their relationship to the control of parasitaemia and host mortality were examined and evaluated. RESULTS: Survival time of mice infected with P. berghei K173 varied, although the infection was uniformly lethal. Mice of the C57BL/6 strain were the most resistant, while mice of the strain ICR were the most susceptible. BALB/c and KM mice were intermediate. In the course of P. berghei K173 infection, all infected mice experienced significant splenomegaly. Parasites were observed in the red pulp at 3 days post infection (dpi) in all animals. All spleens retained late trophozoite stages as well as a fraction of earlier ring-stage parasites. The percentages of macrophages in infected C57BL/6 and KM mice were higher than uninfected mice on 8 dpi. Spleens of infected ICR and KM mice exhibited structural disorganization and remodelling. Furthermore, parasitaemia was significantly higher in KM versus C57BL/6 mice at 8 dpi. The percentages of macrophages in ICR infected mice were lower than uninfected mice, and the parasitaemia was higher than other strains. CONCLUSIONS: The results presented here demonstrate the rate of splenic mechanical filtration and that splenic macrophages are the predominant roles in controlling an individual's total parasite burden. This can influence the pathogenesis of malaria. Finally, different genetic backgrounds of mice have different splenic mechanisms for controlling malaria infection.


Malaria/pathology , Plasmodium berghei/physiology , Spleen/pathology , Animals , Hematologic Tests , Malaria/parasitology , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Inbred ICR , Spleen/parasitology
10.
Pharmacol Ther ; 216: 107658, 2020 12.
Article En | MEDLINE | ID: mdl-32777330

As the first-line antimalarial drugs, artemisinins gained wide acceptance after the emergence of resistance to chloroquine in the 1950s. Artemisinin-based drugs have saved lives, especially in developing countries. The discovery of artemisinin was unique, timely, and fascinating, and the benefits of artemisinin were with far-reaching implications. Herein, we will give a brief description of various aspects of the development of artemisinin and discuss the position and perspectives of artemisinin-based drugs.


Antimalarials/therapeutic use , Artemisia annua , Artemisinins/therapeutic use , Malaria/drug therapy , Plasmodium/drug effects , Animals , Antimalarials/chemistry , Antimalarials/isolation & purification , Artemisia annua/chemistry , Artemisinins/chemistry , Artemisinins/isolation & purification , Humans , Malaria/parasitology , Molecular Structure , Plasmodium/pathogenicity , Structure-Activity Relationship
11.
14.
Am J Chin Med ; 47(6): 1325-1343, 2019.
Article En | MEDLINE | ID: mdl-31488031

Artemisinin and its analogues (ARTs) are currently the most effective anti-malarial drugs, but the precise mechanism of action is still highly controversial. Effects of ARTs on Plasmodium genes expression are studied in our Lab. The overexpression of an interesting amidotransferase, NADH-dependent glutamate synthase (NADH-GltS) was found in treated by dihydroartemisinin (DHA). The increased expression occurred not only from global transcriptomics analysis on the human malaria parasite Plasmodium falciparum (P. falciparum) 3D7 and gene expression screening on all of iron-sulphur cluster proteins from P.f. 3D7 in vitro but also from Plasmodium berghei (P. berghei) ANKA in mice. Influence of DHA on NADH-GltS was specifically at trophozoite stage of P. falciparum and in a dose-dependent manner below the effective doses. L-glutamine (Gln) and L-glutamate (Glu) are the substrate and product of NADH-GltS respectively. Azaserine (Aza) is specific inhibitor for NADH-GltS. Experimental data showed that Glu levels were significantly decreasing with DHA dose increasing but NADH-GltS enzyme activities were still remained at higher levels in parasites, and appropriate amount of exogenous Glu could significantly reduce anti-malarial action of DHA but excessive amount lost the above effect. Aza alone could inhibit proliferation of P. falciparum and had an additive effect in combination with DHA. Those results could suggest that: Glutamate depletion is one of the anti-malarial actions of DHA; overexpression of NADH-GltS would be a feedback pattern of parasite itself due to glutamate depletion, but not a direct action of DHA; the "feedback pattern" is one of protective strategies of Plasmodium to interfere with the anti-malarial actions of DHA; and specific inhibitor for NADH-GltS as a new type of anti-malarial agents or new partner in ACT might provide a potential.


Antimalarials , Artemisinins/pharmacology , Artemisinins/therapeutic use , Gene Expression/drug effects , Glutamate Synthase (NADH)/genetics , Glutamate Synthase (NADH)/metabolism , Malaria/drug therapy , Phytotherapy , Plasmodium falciparum/enzymology , Plasmodium falciparum/genetics , Animals , Azaserine/pharmacology , Disease Models, Animal , Dose-Response Relationship, Drug , Glutamate Synthase (NADH)/antagonists & inhibitors , Glutamic Acid/metabolism , Humans , Mice, Inbred C57BL , Plasmodium falciparum/physiology
15.
Molecules ; 24(10)2019 May 20.
Article En | MEDLINE | ID: mdl-31137574

Malaria is an infectious disease caused by Plasmodium group. The mechanisms of antimalarial drugs DHA/CQ are still unclear today. The inhibitory effects (IC50) of single treatments with DHA/CQ or V-ATPase inhibitor Baf-A1 or combination treatments by DHA/CQ combined with Baf-A1 on the growth of Plasmodium falciparum strain 3D7 was investigated. Intracellular cytoplasmic pH and labile iron pool (LIP) were labeled by pH probe BCECF, AM and iron probe calcein, AM, the fluorescence of the probes was measured by FCM. The effects of low doses of DHA (0.2 nM, 0.4 nM, 0.8 nM) on gene expression of V-ATPases (vapE, vapA, vapG) located in the membrane of DV were tested by RT-qPCR. DHA combined with Baf-A1 showed a synergism effect (CI = 0.524) on the parasite growth in the concentration of IC50. Intracellular pH and irons were effected significantly by different doses of DHA/Baf-A1. Intracellular pH was decreased by CQ combined with Baf-A1 in the concentration of IC50. Intracellular LIP was increased by DHA combined with Baf-A1 in the concentration of 20 IC50. The expression of gene vapA was down-regulated by all low doses of DHA (0.2/0.4/0.8 nM) significantly (p < 0.001) and the expression of vapG/vapE were up-regulated by 0.8 nM DHA significantly (p < 0.001). Interacting with ferrous irons, affecting the DV membrane proton pumping and acidic pH or cytoplasmic irons homeostasis may be the antimalarial mechanism of DHA while CQ showed an effect on cytoplasmic pH of parasite in vitro. Lastly, this article provides us preliminary results and a new idea for antimalarial drugs combination and new potential antimalarial combination therapies.


Artemisinins/pharmacology , Chloroquine/pharmacology , Erythrocytes/parasitology , Homeostasis , Life Cycle Stages/drug effects , Plasmodium falciparum/growth & development , Animals , Antimalarials/pharmacology , Cell Membrane/drug effects , Cell Membrane/parasitology , Drug Therapy, Combination , Erythrocytes/drug effects , Fluorescence , Gene Expression Regulation, Enzymologic/drug effects , Homeostasis/drug effects , Humans , Hydrogen-Ion Concentration , Inhibitory Concentration 50 , Iron/metabolism , Macrolides/pharmacology , Parasites/drug effects , Parasites/growth & development , Parasitic Sensitivity Tests , Plasmodium falciparum/drug effects , Trophozoites/drug effects , Vacuolar Proton-Translocating ATPases/genetics , Vacuolar Proton-Translocating ATPases/metabolism
17.
Zhongguo Zhong Yao Za Zhi ; 43(18): 3771-3781, 2018 Sep.
Article Zh | MEDLINE | ID: mdl-30384545

Heme is a key metabolic factor in all life. Malaria parasite has de novo heme-biosynthetic pathway, however the growth and development of parasite depend on the hemoglobin-derived heme metabolism process during the intraerythrocytic stages, such as the ingestion and degradation of hemoglobin in the food vacuole. The hemoglobin metabolism in the food vesicles mainly includes four aspects: hemoglobin transport and intake, hemoglobin enzymolysis to produce heme, heme polymerization into malarial pigment, and heme transport via the food vacuole. The potential mechanisms of antimalarial drugs,such as chloroquine, artemisinin and atovaquone may be related to this process. The main four aspects of this metabolic process, key metabolic enzymes, effects of antimalarial drugs on the process and their potential mechanism of action would be summarized in this paper, providing ideas for rational use and mechanism exploration of similar drugs.


Heme/metabolism , Plasmodium/metabolism , Antimalarials/pharmacology , Artemisinins/pharmacology , Atovaquone/pharmacology , Chloroquine/pharmacology , Erythrocytes/parasitology , Hemoglobins/metabolism , Humans , Plasmodium/drug effects
18.
Zhongguo Zhong Yao Za Zhi ; 43(20): 4019-4026, 2018 Oct.
Article Zh | MEDLINE | ID: mdl-30486525

Ferroptosis is a new form of regulated cell death which is different from apoptosis, necrosis and autophagy, and results from iron-dependent lipidperoxide accumulation. Now, it is found that ferroptosis is involved in multiple physiological and pathological processes, such as cancer, arteriosclerosis, neurodegenerative diseases, diabetes, antiviral immune response, acute renal failure, hepatic and heart ischemia/reperfusion injury. On the one hand, it could be found the appropriate drugs to promote ferroptosis to clear cancer cells and virus infected cells, etc. On the other hand, we could inhibit ferroptosis to protect healthy cells. China has a wealth of traditional Chinese medicine resources. Chinese medicine contains a variety of active ingredients that regulate ferroptosis. Here, this paper reported the research of ferroptosis pathway, targets of its inducers and inhibitors that have been discovered, and the regulatory effects of the discovered Chinese herbs and its active ingredients on ferroptosis to help clinical and scientific research.


Apoptosis , Drugs, Chinese Herbal/pharmacology , Iron , Materia Medica/pharmacology , China , Humans
19.
Am J Chin Med ; 44(7): 1363-1378, 2016.
Article En | MEDLINE | ID: mdl-27785943

Shaoyao-Gancao Tang (SGT) is one of the most frequently used compound formulas in the treatment of pain-related diseases in the medical practice of traditional Chinese medicine (TCM). To investigate the anti-inflammatory and antinociceptive effects, as well as to uncover the molecular mechanism of SGT, the rat pain model of arthritis was experimentally induced by single unilateral injection of rats' left hind paw with Freund's complete adjuvant (FCA). SGT was orally administered to the rats daily at three doses individually for a period of 16 days post-model induction. Swollen degrees and pain thresholds of the rats in different groups were measured for evaluation of the anti-inflammatory and anti-nociceptive effects of SGT. Furthermore, the mRNA and protein expression levels of transient receptor potential ion channel protein vanilloid receptor 1 (TRPV1) channel as well as its calcium-mediating function in the isolated DRG neurons were further detected to provide indexes for exploration of the molecular mechanisms mediating anti-arthritic activities of SGT. As a result, FCA injection induced significant allodynia, inflammation and edema, accompanied by a significant increase in both expression and calcium-mediating function of the TRPV1 channel. Pharmacologically, oral administration of SGT at a high or middle dose demonstrated a significant relief from the above-mentioned pathological conditions in a dose-dependent manner. Simultaneously the mRNA and protein expressional levels of TRPV1 channel, as well as its calcium-mediating function, were down-regulated greatly. These findings suggest that SGT possesses a significant analgesic and anti-inflammatory effect on arthritis rats; its therapeutic activities might be achieved through reversing the elevated expression and function of TRPV1 channel evoked by FCA.


Arthritis, Experimental/complications , Down-Regulation/drug effects , Drugs, Chinese Herbal/pharmacology , Pain/drug therapy , Pain/etiology , TRPV Cation Channels/genetics , TRPV Cation Channels/metabolism , Administration, Oral , Analgesics/administration & dosage , Analgesics/pharmacology , Animals , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/pharmacology , Arthritis, Experimental/immunology , Calcium/metabolism , Disease Models, Animal , Dose-Response Relationship, Drug , Drugs, Chinese Herbal/administration & dosage , Freund's Adjuvant/immunology , Gene Expression/drug effects , Male , Phytotherapy , RNA, Messenger/metabolism , Rats, Sprague-Dawley
20.
Pharm Biol ; 54(12): 3151-3155, 2016 Dec.
Article En | MEDLINE | ID: mdl-27563755

CONTEXT: Hyperuricaemia is known as an abnormally increased uric acid level in the blood. Although it was observed many years ago, since uric acid excretion via the intestine pathway accounted for approximately one-third of total elimination of uric acid, the molecular mechanism of 'extra-renal excretion' was poorly understood until the finding of uric acid transporters. OBJECTIVE: The objective of this study was to gather all information related to uric acid transporters in the intestine and present this information as a comprehensive and systematic review article. METHODS: A literature search was performed from various databases (e.g., Medline, Science Direct, Springer Link, etc.). The key terms included uric acid, transporter and intestine. The period for the search is from the 1950s to the present. The bibliographies of papers relating to the review subject were also searched for further relevant references. RESULTS: The uric acid transporters identified in the intestine are discussed in this review. The solute carrier (SLC) transporters include GLUT9, MCT9, NPT4, NPT homolog (NPT5) and OAT10. The ATP binding cassette (ABC) transporters include ABCG2 (BCRP), MRP2 and MRP4. Bacterial transporter YgfU is a low-affinity and high-capacity transporter for uric acid. CONCLUSION: The present review may be helpful for further our understanding of hyperuricaemia and be of value in designing future studies on novel therapeutic pathways.


Intestinal Mucosa/metabolism , Organic Anion Transporters/metabolism , Solute Carrier Proteins/metabolism , Uric Acid/metabolism , Animals , Humans , Intestines/chemistry , Organic Anion Transporters/analysis , Solute Carrier Proteins/analysis , Uric Acid/analysis
...