Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 104
1.
Environ Geochem Health ; 46(7): 227, 2024 Jun 07.
Article En | MEDLINE | ID: mdl-38849675

Leakage accidents of buried pipelines have become increasingly common due to the prolonged service of some pipelines which have been in use for more than 150 years. Therefore, there is an urgent need for accurate prediction of pollution scope to aid in the development of emergency remediation strategies. This study investigated the distribution of a light non-aqueous phase liquid in soils containing gas and water through numerical simulations and laboratory experiments. Firstly, a three-dimensional porous medium model was established using ANSYS FLUENT, and for the first time, the distribution of gas and groundwater in soil environments was simulated in the model. Subsequently, the distribution of the three phases of diesel, gas, and water in soil was studied with different leakage velocities and it was found that the leakage velocity played a significant role in the distribution. The areas of diesel in soils at 60 min were 0.112 m2, 0.194 m2, 0.217 m2, and 0.252 m2, with corresponding volumes of 0.028 m3, 0.070 m3, 0.086 m3, and 0.106 m3, respectively, for leakage velocities of 1.3 m/s, 3.4 m/s, 4.6 m/s, and 4.9 m/s. Calculation formulas for distribution areas and volumes were also developed to aid in future prevention and control strategies under different leakage velocities. The study also compared the distribution areas and volumes of diesel in soils with and without groundwater, and it was found that distribution scopes were larger in soils containing groundwater due to capillary force. In order to validate the accuracy of the numerical simulation, laboratory experiments were conducted to study the diffusion of oil, gas, and water under different leakage velocities. The results showed good agreement between the experiments and the simulations. The research findings are of great significance for preventing soil pollution and provide a theoretical basis for developing scientifically sound soil remediation strategies.


Groundwater , Soil Pollutants , Soil , Groundwater/chemistry , Soil Pollutants/analysis , Soil/chemistry , Computer Simulation , Water Pollutants, Chemical/analysis , Models, Theoretical , Gases , Porosity
2.
Int J Pharm ; 660: 124318, 2024 Jun 07.
Article En | MEDLINE | ID: mdl-38852750

Avian influenza virus subtype H9N2 has the ability to infect birds and humans, further causing significant losses to the poultry industry and even posing a great threat to human health. Oral vaccine received particular interest for preventing majority infection due to its ability to elicit both mucosal and systemic immune responses, but their development is limited by the bad gastrointestinal (GI) environment, compact epithelium and mucus barrier, and the lack of effective mucosal adjuvants. Herein, we developed the dendritic fibrous nano-silica (DFNS) grafted with Cistanche deserticola polysaccharide (CDP) nanoparticles (CDP-DFNS) as an adjuvant for H9N2 vaccine. Encouragingly, CDP-DFNS facilitated the proliferation of T and B cells, and further induced the activation of T lymphocytes in vitro. Moreover, CDP-DFNS/H9N2 significantly promoted the antigen-specific antibodies levels in serum and intestinal mucosal of chickens, indicating the good ability to elicit both systemic and mucosal immunity. Additional, CDP-DFNS facilitate the activation of CD4 + and CD8 + T cells both in spleen and intestinal mucosal, and the indexes of immune organs. This study suggested that CDP-DFNS may be a new avenue for development of oral vaccine against pathogens that are transmitted via mucosal route.

3.
Front Microbiol ; 15: 1375826, 2024.
Article En | MEDLINE | ID: mdl-38529177

Waterfowl astroviruses are mainly duck astroviruses and goose astroviruses, of which duck astroviruses (DAstV-3, -4), goose astroviruses (GoAstV-1, -2) are the four new waterfowl 21 astroviruses in recent years, which can lead to enteritis, viral hepatitis, gout and reduce the growth performance of waterfowl, affecting the healthy development of the waterfowl farming industry. Since no targeted drugs or vaccines on the market, studies on the epidemiology of the virus are necessary for vaccine development. In this study, we collected 1546 waterfowl samples from 13 provinces in China for epidemiological investigation. The results showed that 260 samples (16.8%) were positive. Four species of astrovirus were detected in 13 provinces except Fujian province. Among the four sites tested, the highest positive rates were found in farms and slaughterhouses. Cross-host and mixed infection were observed in four species of waterfowl astroviruses. The whole genome of 17 isolates was sequenced and compared with published sequences. Genetic evolution and homology analysis showed that the isolated strains had high similarity to their reference sequences. To assess the pathogenicity of GoAstV, 7-day-old goslings were inoculated with GoAstV-1 and GoAstV-2 by the intramuscular route, and infected geese showed similar clinical signs, such as anorexia, depression, and weight loss. Organ damage was seen after infection, with histopathological changes in the heart, liver, spleen, kidney, and intestine, and higher viral loads in throat and anal swabs. These findings increase our understanding of the pathogenicity of GoAstV-1 and GoAstV-2 in goslings and provide more references for future research.

4.
Vet Microbiol ; 292: 110038, 2024 May.
Article En | MEDLINE | ID: mdl-38458047

In 2020, an H5N1 avian influenza virus of clade 2.3.4.4b was detected in Europe for the first time and was spread throughout the world by wild migratory birds, resulting in the culling of an unprecedented number of wild birds and poultry due to the epidemic. In February 2023, we isolated and identified a strain of H5N1 high pathogenicity avian influenza virus from a swab sample from a grey crane in Ningxia, China. Phylogenetic analysis of the Hemagglutinin (HA) gene showed that the virus belonged to clade 2.3.4.4b, and several gene segments were closely related to H5N1 viruses infecting humans in China. Analysis of key amino acid sites revealed that the virus contained multiple amino acid substitutions that facilitate enhanced viral replication and mammalian pathogenicity. The results of animal challenge experiments showed that the virus is highly pathogenic to chickens, moderately pathogenic to BALB/c mice, and highly infectious but not lethal to mallards. Moreover, the virus exhibited minor antigenic drift compared with the H5-Re14 vaccine strain. To this end, we need to pay more attention to the monitoring of wild birds to prevent further spread of viruses to poultry and mammals, including humans.


Influenza A Virus, H5N1 Subtype , Influenza in Birds , Rodent Diseases , Humans , Mice , Animals , Poultry , Chickens , Phylogeny , Virulence , Ducks , Animals, Wild , Mammals
5.
Int J Med Mushrooms ; 26(2): 11-23, 2024.
Article En | MEDLINE | ID: mdl-38421693

Ganoderic acid A (GAA) is one of the major triterpenoids in Ganoderma lucidum (GL). Accumulating evidence has indicated that GAA demonstrates multiple pharmacological effects and exhibits treatment potential for various neurological disorders. Here, the effects and mechanisms of GAA in the treatment of neurological disorders were evaluated and discussed through previous research results. By summarizing previous research results, we found that GAA may play a neuroprotective role through various mechanisms: anti-inflammatory, anti-oxidative stress, anti-apoptosis, protection of nerve cells, and regulation of nerve growth factor. Therefore, GAA is a promising natural neuroprotective agent and this review would contribute to the future development of GAA as a novel clinical candidate drug for treating neurological diseases.


Heptanoic Acids , Lanosterol/analogs & derivatives , Nervous System Diseases , Neuroprotective Agents , Humans , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Lanosterol/pharmacology , Lanosterol/therapeutic use , Nervous System Diseases/drug therapy
6.
Environ Technol ; : 1-14, 2024 Feb 13.
Article En | MEDLINE | ID: mdl-38350023

The properties of aggregates significantly affect the demulsification efficiency within the electrocoagulation reactor. This paper aims to explore aggregate properties including the particle size, strength factor (Fs), and recovery factor (Fr). The experiments were carried out using aluminum-aluminum electrodes. The experimental results indicate that breakage time did not change Fs much but was positively correlated with Fr. When the current was increased from 0.75 A to 1.0 A, Fs experienced a decrease of 12.42%, while Fr exhibited an increase of 19.38%. In comparison to pH 9.0, both Fs and Fr demonstrated an increase at pH levels of 2.0 and 10.0. The size of aggregates significantly decreases under rocking conditions simulating offshore environments, while the oil removal rate does not change much. This phenomenon can be attributed to the fact that different initial mean particle sizes have different Fs and Fr. The aggregates |Fs-Fr| were positively correlated with the initial average particle size of the electroflocculated aggregates. The present study offers a crucial theoretical foundation for the growth and regulation of aggregates formed during electrocoagulation treatment of oil spills on the sea surface.Synopsis: This paper is of great theoretical value for understanding the growth and control of EC aggregates to treat offshore light oil spills using the electrocoagulation process.

7.
Materials (Basel) ; 17(2)2024 Jan 09.
Article En | MEDLINE | ID: mdl-38255500

The effects of vanadium addition on the solidification microstructure and mechanical properties of Al-4Ni alloy were investigated via thermodynamic computation, thermal analysis, microstructural observations, and mechanical properties testing. The results show that the nucleation temperature of primary α-Al increased with increased vanadium addition. A transition from columnar to equiaxed growth took place when adding vanadium to Al-4Ni alloys, and the average grain size of primary α-Al was reduced from 1105 µm to 252 µm. When the vanadium addition was 0.2 wt%, the eutectic nucleation temperature increased from 636.2 °C for the Al-4Ni alloy to 640.5 °C, and the eutectic solidification time decreased from 310 s to 282 s. The average diameter of the eutectic Al3Ni phases in the Al-4Ni-0.2V alloy reduced to 0.14 µm from 0.26 µm for the Al-4Ni alloy. As the vanadium additions exceeded 0.2 wt%, the eutectic nucleation temperature had no obvious change and the eutectic solidification time increased. The eutectic Al3Ni phases began to coarsen, and the number of lamellar eutectic boundaries increased. The mechanical properties of Al-4Ni alloys gradually increased with vanadium addition (0-0.4 wt%). The Al-4Ni-0.4V alloy obtained the maximum tensile strength and elongation values, which were 136.4 MPa and 23.5%, respectively. As the vanadium addition exceeded 0.4 wt%, the strength and elongation decreased, while the hardness continued to increase. Fracture in the Al-4Ni-0.4V alloy exhibited ductile fracture, while fracture in the Al-4Ni-0.6V alloy was composed of dimples, tear edges, and cleavage planes, demonstrating mixed ductile-brittle fracture. The cleavage planes were caused by the primary Al10V and coarse Al3Ni phases at the boundary of eutectic cells.

8.
Bioorg Med Chem ; 97: 117539, 2024 01 01.
Article En | MEDLINE | ID: mdl-38070351

A series of 1-(2-oxocyclohexyl)butane-1, 3-dione derivatives were designed and synthesized as TLR4 inhibitors by modifying the core structure of the lead compound ((6, 8-dioxo-1, 2, 3, 4, 6, 7, 8, 8a-octahydronaphthalen-2-yl) carbamate)). In vitro, compound 3p significantly inhibited the proliferation of rat synovial cells, inhibited the proliferation of LPS-induced RAW264.7 cells, and inhibited TLR4 activity, with IC50 values of 1.21 ± 0.09 µM, 0.73 ± 0.05 µM and 0.43 ± 0.03 µM, respectively, which was superior to the positive control methotrexate. In vivo anti-rheumatoid arthritis evaluation, compound 3p can significantly inhibit the inflammatory factors TNF-α, IL-1ß and IL-6, so as to achieve the therapeutic purpose. In the preliminary mechanism study, compound 3p has obvious regulatory effects on the abnormal increase of TLR4, JAK2 and STAT3 protein and gene expression related to inflammatory signaling pathway in RAW264.7 cells. In summary, this study aims to develop more effective candidates for rheumatoid arthritis.


Arthritis, Rheumatoid , Synoviocytes , Rats , Animals , Toll-Like Receptor 4/genetics , Arthritis, Rheumatoid/chemically induced , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/metabolism , Signal Transduction , Tumor Necrosis Factor-alpha/metabolism , Synoviocytes/metabolism , Lipopolysaccharides/pharmacology , NF-kappa B/metabolism
10.
Front Microbiol ; 14: 1283210, 2023.
Article En | MEDLINE | ID: mdl-38094631

Due to its high mortality rate, highly pathogenic avian influenza (HPAI), a notifiable animal illness designated by the World Organisation for Animal Health (WOAH), has caused enormous financial losses to the poultry sector. The H5 subtype of avian influenza virus (H5-AIV) is regarded as the most common highly pathogenic avian influenza virus (HPAIV) that threatens public health and safety. Virus isolation and reverse transcription quantitative PCR (RT-qPCR) are usually used to detect H5-AIV and are important for the timely diagnosis and control of H5-AIV. However, these methods are time-consuming and require a significant amount of effort. In this study, we established a recombinase-aided amplification (RAA) combined with CRISPR-Cas13a and lateral flow dipstick (LFD) assay for the detection of H5-AIV. The results showed that the process can be completed within 40 min at 37°C. The method had a detection limit of 0.1 copy/µL, which was comparable to the RT-qPCR. There was no cross-reactivity with H3-AIV, H7-AIV, H9-AIV, H10-AIV, IBV, NDV, RVA and DAstV. The kappa value of RT-RAA-Cas13a-LFD and RT-qPCR in 380 clinical samples was 0.89 (κ>0.75). In conclusion, we established a convenient, efficient and accurate method to detect H5-AIV, and the results can be visualized and interpreted using LFD, which can be adapted to the needs of grassroots laboratories and field-deployable assays. This approach provides a new perspective for clinical H5-AIV diagnosis and has great potential for application in clinical quarantine of the poultry farming.

11.
Front Microbiol ; 14: 1286713, 2023.
Article En | MEDLINE | ID: mdl-38029110

Avian influenza viruses (AIV) pose a significant persistent threat to the public health and safety. It is estimated that there have been over 100 outbreaks caused by various H7 subtypes of avian influenza viruses (AIV-H7) worldwide, resulting in over 33 million deaths of poultry. In this study, we developed a recombinase-aided amplification combined with a lateral flow dipstick assay for the detection of hemagglutinin (HA) genes to provide technical support for rapid clinical detection of AIV-H7. The results showed that the assay can complete the reaction within 30 min at a temperature of 39°C. Specificity tests demonstrated that there was no cross-reactivity with other common poultry pathogens, including Newcastle disease virus (NDV) and infections bronchitis virus (IBV). The detection limit of this assay was 1 × 101 copies/µL, while RT-qPCR method was 1 × 101 copies/µL, and RT-PCR was 1 × 102 copies/µL. The κ value of the RT-RAA-LFD and RT-PCR assay in 132 avian clinical samples was 0.9169 (p < 0.001). These results indicated that the developed RT-RAA-LFD assay had good specificity, sensitivity, stability and repeatability and may be used for rapid detection of AIV-H7 in clinical diagnosis.

12.
Int J Med Mushrooms ; 25(11): 65-74, 2023.
Article En | MEDLINE | ID: mdl-37831513

With the development of molecular biology and genomics technology, mushroom breeding methods have changed from single traditional breeding to molecular breeding. Compared with traditional breeding methods, molecular breeding has the advantages of short time and high efficiency. It breaks through the restrictive factors of conventional breeding and improves the accuracy of breeding. Molecular breeding technology is gradually applied to mushroom breeding. This paper summarizes the concept of molecular breeding and the application progress of various molecular breeding technologies in mushroom breeding, in order to provide reference for future research on mushroom breeding.


Agaricales , Agaricales/genetics , DNA Shuffling
13.
Microbiol Spectr ; 11(6): e0218623, 2023 Dec 12.
Article En | MEDLINE | ID: mdl-37811963

IMPORTANCE: Avian influenza virus (AIV) subtype H5 is a highly contagious zoonotic disease and a serious threat to the farming industry and public health. Traditional detection methods, including virus isolation and real-time PCR, require tertiary biological laboratories and are time-consuming and complex to perform, making it difficult to rapidly diagnose H5 subtype avian influenza viruses. In this study, we successfully developed two methods, namely, RF-RT-RAA and RT-RAA-LFD, for rapid detection of H5-AIV. The assays are characterized by their high specificity, sensitivity, and user-friendliness. Moreover, the results of the reaction can be visually assessed, which are suitable for both laboratory testing and grassroots farm screening for H5-AIV.


Influenza A virus , Influenza in Birds , Animals , Humans , Reverse Transcription , Influenza in Birds/diagnosis , Recombinases/metabolism , Sensitivity and Specificity , Influenza A virus/genetics , Hydrolases , Technology
14.
Materials (Basel) ; 16(14)2023 Jul 15.
Article En | MEDLINE | ID: mdl-37512283

In this work, ultrasonic vibration treatment (UVT) was introduced to improve the interfacial microstructure and bonding strength of A356/AZ91D bimetal processed via lost foam compound casting (LFCC). The interfacial microstructure and mechanical properties of the Al/Mg bimetal processed via LFCC with different UVT durations were investigated. Results revealed the UVT did not change the composition of phases at the interface. The Al/Mg bimetallic interface consisted of an intermetallic compound area (ß-Al3Mg2 + γ-Al12Mg17 + Mg2Si) and eutectic area (δ-Mg + γ-Al12Mg17 + Mg2Si). When the duration of the UVT was increased, the gathered Mg2Si particles at the intermetallic compound area were refined to sizes of no more than 5 µm and became more homogeneously dispersed in the intermetallic compound area and diffused in the eutectic area, which could be attributed to the removal of oxide film and the acoustic cavitation and streaming flow effects induced by the UVT. The microhardness of the Al/Mg bimetallic interface was not obviously changed by the increase in UVT duration. The shear strength of the Al/Mg bimetal was increased with UVT and reached maximum with a UVT duration of 5 s, with a value of 56.7 MPa, which was increased by 70.3%, compared with Al/Mg bimetal without UVT. This could be attributed to the removal of the oxide film at the Al/Mg bimetallic interface, which improved the metallurgical bonding of the Al/Mg interface. Additionally, the refined and homogeneously dispersed Mg2Si particles played an important role in suppressing the propagation of cracks and enhancing the shear strength of the Al/Mg bimetal.

15.
Phytother Res ; 37(9): 3839-3858, 2023 Sep.
Article En | MEDLINE | ID: mdl-37329165

Cordycepin is a bioactive compound extracted from Cordyceps militaris. As a natural antibiotic, cordycepin has a wide variety of pharmacological effects. Unfortunately, this highly effective natural antibiotic is proved to undergo rapid deamination by adenosine deaminase (ADA) in vivo and, as a consequence, its half-life is shortened and bioavailability is decreased. Therefore, it is of critical importance to work out ways to slow down the deamination so as to increase its bioavailability and efficacy. This study reviews recent researches on a series of aspects of cordycepin such as the bioactive molecule's pharmacological action, metabolism and transformation as well as the underlying mechanism, pharmacokinetics and, particularly, the methods for reducing the degradation to improve the bioavailability and efficacy. It is drawn that there are three methods that can be applied to improve the bioavailability and efficacy: to co-administrate an ADA inhibitor and cordycepin, to develop more effective derivatives via structural modification, and to apply new drug delivery systems. The new knowledge can help optimize the application of the highly potent natural antibiotic-cordycepin and develop novel therapeutic strategies.


Cordyceps , Biological Availability , Cordyceps/metabolism , Adenosine Deaminase/metabolism , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/pharmacology
16.
Virus Genes ; 59(4): 554-561, 2023 Aug.
Article En | MEDLINE | ID: mdl-37184730

In October 2020, an avian paramyxovirus serotype 14 (APMV-14)-designated chicken/Fujian/2160/2020 (FJ2160) was isolated from tracheal and cloacal swab sample of chicken collected from live bird market in Fujian province in China during the active surveillance program. The complete genome of FJ2160 comprised 15,444 nucleotides (nt) complying with the paramyxovirus "rule of six" and encoded six non-overlapping structural proteins in the order of 3'-NP-P-M-F-HN-L-'5. The complete genome sequence analysis showed that FJ2160 had the highest identity (90.0%) with the APMV-14 isolated from Japan, while the nucleotide sequence identities of FJ2160 and other APMVs ranged from 42.4 to 51.1%. The F protein cleavage site was TREGR↓L, which resembled a lentogenic strain of APMV-1. Phylogenetic analysis revealed that the FJ2160 closest relative was APMV-14. The intracerebral pathogenicity index (ICPI) tests indicated that the virus was lentogenic. This is the first report of APMV-14 in China. These results provide evidence that APMV-14 could infect chickens and reveal the genetic characteristics and biological properties of the virus, which can help to better understand this new emerging APMV-14.


Avulavirus , Chickens , Animals , Serogroup , Genome, Viral/genetics , Avulavirus/genetics , Phylogeny , China
17.
Chemosphere ; 333: 138744, 2023 Aug.
Article En | MEDLINE | ID: mdl-37146773

Soil characteristics play an important role in distribution of light non-aqueous phase liquid (LNAPL) spilled from buried pipeline, and enhanced understanding of distribution is significant to the effective design of soil and groundwater remediation strategies. Therefore, distribution of diesel in soils with different porosity and temperature on the temporal evolution of the diesel migration following the saturation profiles of the two-phase flow in soils were investigated in this study. The diffusion ranges, areas and volumes in both the radial as well as in axial directions of leaked diesel in soils with different porosity and temperature increased with time. Soil porosities played an important role in the distributions when soil temperatures had no effect on distributions of diesel in soils. The distribution areas were 0.385 m2, 0.294 m2, 0.213 m2, and 0.170 m2 at 60 min when the soils porosities were 0.1, 0.2, 0.3, and 0.4, respectively. The distribution volumes were 0.177 m3, 0.125 m3, 0.082 m3, 0.060 m3 at 60 min when the soils porosities were 0.1, 0.2, 0.3, and 0.4, respectively. But the distribution areas were 0.213 m2 at 60 min when the soil temperatures were 286.15 K, 296.15 K, 306.15 K and 316.15 K, respectively. The distribution volumes were 0.082 m3 at 60 min when the soil temperatures were 286.15 K, 296.15 K, 306.15 K and 316.15 K, respectively. The calculation formulas of distribution areas and volumes of diesel in soils with different porosity and temperature for developing prevention and control strategies in the future were fitted. The seepage velocities of diesel changed sharply around the leakage port and decreased from about 4.9 m/s to 0 within a few millimeters in soils with different porosity. Additionally, the diffusion ranges of leaked diesel in soils with different porosity were different, indicating that soil porosity had a significant impact on seepage velocities and pressures. The seepage velocities fields and pressures fields of diesel in soils with different temperature were same at the leakage velocity of 4.9 m/s. And the study could provide some supports for determination of the safety zone and formulation of emergency response plans for LNAPL leakage accidents.


Soil Pollutants , Soil , Porosity , Temperature , Soil Pollutants/analysis , Diffusion
18.
J Environ Manage ; 339: 117899, 2023 Aug 01.
Article En | MEDLINE | ID: mdl-37054592

Foundry dust is the main refractory solid waste in the foundry industry, and its resource utilization is a top priority for realizing green and cleaner production. The massive amount of coal dust in foundry dust is a potential impediment to the recycling of foundry dust, and the efficient separation of coal dust is crucial to solving the above problems. In this paper, the flotation separation of coal dust from foundry dust enhanced by pre-soaking assisted mechanical stirring was reported. The influence of pre-soaking, stirring speed, and stirring time on the flotation results of foundry dust was systematically studied, and the enhancement mechanism was analyzed based on the microstructure and hydrophobicity of foundry dust. Flotation kinetics experiments with different stirring time were conducted to clarify the flotation process of foundry dust. The results indicate that the pre-soaking of foundry dust is beneficial for the water-absorbing swelling of clay minerals coated on the surface of coal dust, and the subsequent mechanical stirring pretreatment promotes the monomer dissociation of foundry dust, which increases the contact angle of foundry dust and considerably improves the flotation results. The optimal stirring speed and stirring time were 2400 rpm and 30 min, respectively. The classical first-order model presented the highest degree of fitting with the flotation data among the five flotation kinetics models. Therefore, the pre-soaking assisted mechanical stirring is a promising method for promoting flotation separation and the complete recycling of foundry dust.


Coal , Dust , Solid Waste/analysis , Minerals , Recycling/methods
19.
Virus Genes ; 59(2): 240-243, 2023 Apr.
Article En | MEDLINE | ID: mdl-36735176

In 2021, an H7N3 avian influenza virus (AIV) was isolated from a mallard in Tianhewan Yellow River National Wetland Park, Ningxia Hui Autonomous Region, China. Sequences analysis showed that this strain received its genes from H7, H6, H5, H3, and H1 AIVs of domestic poultry and wild birds in Asia and Europe. It was mild pathogenicity in mice. These results suggest the importance of continued surveillance of the H7N3 virus to better understand the ecology and evolution of the AIVs in poultry and wild birds and the potential threat to humans.


Influenza in Birds , Humans , Animals , Mice , Influenza A Virus, H7N3 Subtype/genetics , Phylogeny , Animals, Wild/genetics , Birds , Poultry , Sequence Analysis
20.
Appl Microbiol Biotechnol ; 107(7-8): 2437-2450, 2023 Apr.
Article En | MEDLINE | ID: mdl-36820898

Nucleoprotein (NP) functions crucially in the replicative cycle of influenza A virus (IAV) via forming the ribonucleoprotein complex together with PB2, PB1, and PA proteins. As its high conservation, NP ranks one of the hot targets for design of universal diagnostic reagents and antiviral drugs for IAV. Here, we report an anti-NP murine monoclonal antibody (mAb) 5F10 prepared from traditional lymphocyte hybridoma technique with the immunogen of a clade 2.3.4.4 H5N1 subtype avian influenza virus. The specificity of mAb 5F10 to NP protein was confirmed by immunofluorescence assay and western blotting, and the mAb 5F10 could be used in immunoprecipitation and immunohistochemistry assays. Importantly, mAb 5F10 possessed broad-spectrum reactivity against H1~H11 subtypes of avian influenza viruses, including various HA clades of H5Nx subtype. In addition, mAb 5F10 also showed good affinity with H1N1 and H3N2 subtype influenza viruses of swine and human origin. Furthermore, the recognized antigenic epitope of mAb 5F10 was identified to consist of the conserved amino acid motif 81EHPSA85 in the second flexible loop region of NP protein through screening the phage display peptide library. Collectively, the mAb 5F10 which recognizes the novel universal NP linear B-cell epitope of IAV with diverse origins and subtypes will be a powerful tool for NP protein-based structural, functional, and mechanistic studies, as well as the development of detection methods and universal vaccines for IAV. KEY POINTS: • A broad-spectrum mAb against various subtypes and sources of IAV was developed • The mAb possessed good reactivity in IFA, western blot, IP, and IHC assays • The mAb targeted a novel conserved linear B-cell epitope involving 81EHPSA85 on NP protein.


Influenza A Virus, H1N1 Subtype , Influenza A Virus, H5N1 Subtype , Influenza A virus , Influenza, Human , Animals , Humans , Mice , Swine , Antibodies, Monoclonal , Nucleoproteins , Epitopes, B-Lymphocyte , Influenza A Virus, H3N2 Subtype , Antibodies, Viral
...