Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 301
1.
Inhal Toxicol ; 36(4): 275-281, 2024 Apr.
Article En | MEDLINE | ID: mdl-38836332

Multiwalled carbon nanotubes (MWCNTs) have numerous applications in the field of carbon nanomaterials. However, the associated toxicity concerns have increased significantly because of their widespread use. The inhalation of MWCNTs can lead to nanoparticle deposition in the lung tissue, causing inflammation and health risks. In this study, celastrol, a natural plant medicine with potent anti-inflammatory properties, effectively reduced the number of inflammatory cells, including white blood cells, neutrophils, and lymphocytes, and levels of inflammatory cytokines, such as IL-1ß, IL-6, and TNF-α, in mice lungs exposed to MWCNTs. Moreover, celastrol inhibited the activation of the NF-κB-signaling pathway. This study confirmed these findings by demonstrating comparable reductions in inflammation upon exposure to MWCNTs in mice with the deletion of NF-κB (P50-/-). These results indicate the utility of celastrol as a promising pharmacological agent for preventing MWCNT-induced lung tissue inflammation.


Mice, Inbred C57BL , NF-kappa B , Nanotubes, Carbon , Pentacyclic Triterpenes , Pneumonia , Signal Transduction , Triterpenes , Animals , Pentacyclic Triterpenes/pharmacology , Nanotubes, Carbon/toxicity , Signal Transduction/drug effects , Triterpenes/pharmacology , Pneumonia/chemically induced , Pneumonia/drug therapy , Pneumonia/prevention & control , Pneumonia/metabolism , NF-kappa B/metabolism , Male , Lung/drug effects , Lung/pathology , Lung/metabolism , Anti-Inflammatory Agents/pharmacology , Cytokines/metabolism , Mice , Mice, Knockout , Bronchoalveolar Lavage Fluid/cytology , Bronchoalveolar Lavage Fluid/chemistry
2.
Research (Wash D C) ; 7: 0389, 2024.
Article En | MEDLINE | ID: mdl-38779486

The gut microbiota undergoes substantial changes in COVID-19 patients; yet, the utility of these alterations as prognostic biomarkers at the time of hospital admission, and its correlation with immunological and hematological parameters, remains unclear. The objective of this study is to investigate the gut microbiota's dynamic change in critically ill patients with COVID-19 and evaluate its predictive capability for clinical outcomes alongside immunological and hematological parameters. In this study, anal swabs were consecutively collected from 192 COVID-19 patients (583 samples) upon hospital admission for metagenome sequencing. Simultaneously, blood samples were obtained to measure the concentrations of 27 cytokines and chemokines, along with hematological and biochemical indicators. Our findings indicate a significant correlation between the composition and dynamics of gut microbiota with disease severity and mortality in COVID-19 patients. Recovered patients exhibited a higher abundance of Veillonella and denser interactions among gut commensal bacteria compared to deceased patients. Furthermore, the abundance of gut commensal bacteria exhibited a negative correlation with the concentration of proinflammatory cytokines and organ damage markers. The gut microbiota upon admission showed moderate prognostic prediction ability with an AUC of 0.78, which was less effective compared to predictions based on immunological and hematological parameters (AUC 0.80 and 0.88, respectively). Noteworthy, the integration of these three datasets yielded a higher predictive accuracy (AUC 0.93). Our findings suggest the gut microbiota as an informative biomarker for COVID-19 prognosis, augmenting existing immune and hematological indicators.

3.
Article En | MEDLINE | ID: mdl-38812290

BACKGROUND AND AIM: Lumen-apposing metal stents (LAMS) are preferred to initial drainage in pancreatic fluid collections (PFCs) patients with disconnected pancreatic duct syndrome (DPDS) in recent years. However, unlike plastic stents, the long-term placement of LAMS is not recommended due to a high risk of local complications. This meta-analysis attempted to evaluate the effect of using plastic stents for prolonged drainage after LAMS removal on recurrence of PFCs in DPDS. METHODS: A comprehensive literature search was conducted from inception until January 2023, to identify articles investigating the endoscopic ultrasound (EUS)-guided treatment of plastic stents compared with no plastic stents following LAMS removal in patients with PFCs and DPDS. The primary outcome measures included recurrence of PFCs and need for reintervention. RESULTS: We identified 3 eligible articles including 520 patients with PFCs, 246 of whom with DPDS. There was a total of 143 and 103 patients in the plastic stents group and in the no plastic stents group, respectively. The plastic stents group exhibited a lower rate of PFCs recurrence following LAMS removal after PFCs resolution compared with the no plastic stents group (OR 0.15; 95% CI 0.03-0.75; P=0.02). However, there was no difference in the rates of reintervention between the two groups (OR 0.52; 95% CI 0.15-1.83; P=0.31). There was no severe adverse events and mortality associated with stent placement or exchange in all patients. CONCLUSION: Deployment of plastic stents for long-term drainage after LAMS replacement can decrease the risk of PFCs recurrence in patients with DPDS following resolution, but it does not impact reintervention rates.

4.
J Biol Chem ; 300(6): 107335, 2024 May 04.
Article En | MEDLINE | ID: mdl-38705394

Endoplasmic reticulum (ER) stress, a common cellular stress response induced by various factors that interfere with cellular homeostasis, may trigger cell apoptosis. Autophagy is an important and conserved mechanism for eliminating aggregated proteins and maintaining protein stability of cells, which is closely associated with ER stress and ER stress-induced apoptosis. In this paper, we report for the first time that Hhatl, an ER-resident protein, is downregulated in response to ER stress. Hhatl overexpression alleviated ER stress and ER stress induced apoptosis in cells treated with tunicamycin or thapsigargin, whereas Hhatl knockdown exacerbated ER stress and apoptosis. Further study showed that Hhatl attenuates ER stress by promoting autophagic flux. Mechanistically, we found that Hhatl promotes autophagy by associating with autophagic protein LC3 (microtubule-associated protein 1A/1B-light chain 3) via the conserved LC3-interacting region motif. Noticeably, the LC3-interacting region motif was essential for Hhatl-regulated promotion of autophagy and reduction of ER stress. These findings demonstrate that Hhatl ameliorates ER stress via autophagy activation by interacting with LC3, thereby alleviating cellular pressure. The study indicates that pharmacological or genetic regulation of Hhatl-autophagy signaling might be potential for mediating ER stress and related diseases.

5.
Inorg Chem ; 63(15): 6701-6713, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38563144

The singlet oxygen (1O2) oxidation process activated by metal-free catalysts has recently attracted considerable attention for organic pollutant degradation; however, the 1O2 formation remains controversial. Simultaneously, the catalytic activity of the metal-free catalyst limits the practical application. In this study, carbon nitride (HCCN) containing an intramolecular homojunction, a kind of metal-free catalyst, exhibits excellent activity compared to g-C3N4 (CN) and crystalline carbon nitride (HCN) for tetracycline hydrochloride degradation through the H2O2-based Fenton-like reaction. The rate constant for HCCN increased about 16.1 and 8.9 times than that of CN and HCN, respectively. The activity of HCCN was enhanced, and the dominant reactive oxygen species (ROS) changed from hydroxyl radicals (•OH) to 1O2 with an increase in pH from 4.5 to 11.5. A novel formation pathway of 1O2 was revealed. This result is different from the normal reference, in which •OH is always the primary ROS in the H2O2-based Fenton-like reaction. This study may provide a possible strategy for the investigation on the nonradical oxidation process in the Fenton-like reaction.

6.
Mol Neurobiol ; 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38625620

Although naturally Streptococcus suis serotype 2 (SS2) causes meningitis resulting in death or sequela of neurological symptoms in pigs and humans, severely threatening public health in the world, it has been difficult to build up and confirm experimental meningitis mouse models with obvious neurological syndrome for about two decades, which strongly hampers the in-depth study on the control measures and mechanisms of SS2-induced meningitis. In this study, a typical meningitis mouse model of SS2 was successfully established, as confirmed by the behavioral indicators of balance beam test, suspension test, and gait analysis. With bacteria gathering in the brain, distinguishable unique features including meningeal thickening, vacuolization of the Nissl body, brain barrier damage, glial cell activation, and more infiltration of T cells, macrophages, and DCs are observed in SS2 meningitis mice with typical neurological signs. Some meningitis mice were also accompanied by identical nephritis, ophthalmia, and cochlearitis. Investigation of the metabolic features demonstrated the downregulated cholic acid and upregulated 2-hydroxyvaleric acid, tetrahydrocortisone, nicotinic acid, and lauric acid in blood serum of mice and piglets with meningitis. And feeding trials show that lauric acid can promote meningitis by promoting the infiltration of immune cells into brain. These findings demonstrated that infection of ICR (improved castle road) mice with SS2 was able to induce typical meningitis accompanied by immune cell infiltration and lauric acid upregulation. These data provide a basis for the deep study of SS2 meningitis.

7.
Orthop Surg ; 16(5): 1143-1152, 2024 May.
Article En | MEDLINE | ID: mdl-38561920

OBJECTIVE: Medial opening-wedge high tibial osteotomy (MOWHTO) is a surgical procedure to treat medial compartment osteoarthritis in the knee with varus deformity. However, factors such as patellar height (PH) and the sagittal plane's posterior tibial slope angle (PTSA) are potentially overlooked. This study investigated the impact of alignment correction angle guided by computer-designed personalized surgical guide plate (PSGP) in MOWHTO on PH and PTSA, offering insights for enhancing surgical techniques. METHODS: This retrospective study included patients who underwent 3D-printed PSGP-assisted MOWHTO at our institution from March to September 2022. The paired t-tests assessed differences in all preoperative and postoperative measurement parameters. Multivariate linear regression analysis examined correlations between PTSA, CDI (Caton-Deschamps Index), and the alignment correction magnitude. Receiver operating characteristic (ROC) curve analysis determined the threshold of the correction angle, calculating sensitivity, specificity, and area under the curve. RESULTS: A total of 107 patients were included in our study. The CDI changed from a preoperative mean of 0.97 ± 0.13 (range 0.70-1.34) to a postoperative mean of 0.82 ± 0.13 (range 0.55-1.20). PTSA changed from a preoperative mean of 8.54 ± 2.67 (range 2.19-17.55) to a postoperative mean of 10.54 ± 3.05 (range 4.48-18.05). The t-test revealed statistically significant changes in both values (p < 0.05). A significant alteration in patellar height occurred when the correction angle exceeded 9.39°. Moreover, this paper illustrates a negative correlation between CDI change and the correction angle and preoperative PTSA. Holding other factors constant, each 1-degree increase in the correction angle led to a 0.017 decrease in postoperative CDI, and each 1-degree increase in preoperative PTSA resulted in a 0.008 decrease in postoperative CDI. PTSA change was positively correlated only with the correction angle; for each 1-degree increase in the opening angle, postoperative PTS increased by 0.188, with other factors constant. CONCLUSION: This study highlights the effectiveness and precision of PSGP-assisted MOWHTO, focusing on the impact of alignment correction on PH and PTSA. These findings support the optimization of PSGP technology, which offers simpler, faster, and safer surgeries with less radiation and bleeding than traditional methods. However, PSGP's one-time use design and the learning curve required for its application are limitations, suggesting areas for further research.


Osteoarthritis, Knee , Osteotomy , Patella , Surgery, Computer-Assisted , Tibia , Humans , Retrospective Studies , Osteotomy/methods , Female , Male , Middle Aged , Tibia/surgery , Patella/surgery , Adult , Osteoarthritis, Knee/surgery , Surgery, Computer-Assisted/methods , Aged , Printing, Three-Dimensional
8.
Open Med (Wars) ; 19(1): 20240898, 2024.
Article En | MEDLINE | ID: mdl-38463518

Photothermal therapy (PTT) of nanomaterials is an emerging novel therapeutic strategy for breast cancer. However, there exists an urgent need for appropriate strategies to enhance the antitumor efficacy of PTT and minimize damage to surrounding normal tissues. Piezo1 might be a promising novel photothermal therapeutic target for breast cancer. This study aims to explore the potential role of Piezo1 activation in the hyperthermia therapy of breast cancer cells and investigate the underlying mechanisms. Results showed that the specific agonist of Piezo1 ion channel (Yoda1) aggravated the cell death of breast cancer cells triggered by heat stress in vitro. Reactive oxygen species (ROS) production was significantly increased following heat stress, and Yoda1 exacerbated the rise in ROS release. GSK2795039, an inhibitor of NADPH oxidase 2 (NOX2), reversed the Yoda1-mediated aggravation of cellular injury and ROS generation after heat stress. The in vivo experiments demonstrate the well photothermal conversion efficiency of TiCN under the 1,064 nm laser irradiation, and Yoda1 increases the sensitivity of breast tumors to PTT in the presence of TiCN. Our study reveals that Piezo1 activation might serve as a photothermal sensitizer for PTT, which may develop as a promising therapeutic strategy for breast cancer.

9.
Sci Adv ; 10(5): eadj7813, 2024 Feb 02.
Article En | MEDLINE | ID: mdl-38306420

Metabolic syndrome (MetS) is closely associated with an increased risk of dementia and cognitive impairment, and a complex interaction of genetic and environmental dietary factors may be implicated. Free fatty acid receptor 4 (Ffar4) may bridge the genetic and dietary aspects of MetS development. However, the role of Ffar4 in MetS-related cognitive dysfunction is unclear. In this study, we found that Ffar4 expression is down-regulated in MetS mice and MetS patients with cognitive impairment. Conventional and microglial conditional knockout of Ffar4 exacerbated high-fat diet (HFD)-induced cognitive dysfunction and anxiety, whereas microglial Ffar4 overexpression improved HFD-induced cognitive dysfunction and anxiety. Mechanistically, we found that microglial Ffar4 regulated microglial activation through type I interferon signaling. Microglial depletion and NF-κB inhibition partially reversed cognitive dysfunction and anxiety in microglia-specific Ffar4 knockout MetS mice. Together, these findings uncover a previously unappreciated role of Ffar4 in negatively regulating the NF-κB-IFN-ß signaling and provide an attractive therapeutic target for delaying MetS-associated cognitive decline.


Cognitive Dysfunction , Metabolic Syndrome , Receptors, G-Protein-Coupled , Animals , Humans , Mice , Cognitive Dysfunction/genetics , Cognitive Dysfunction/complications , Metabolic Syndrome/complications , Metabolic Syndrome/genetics , Mice, Knockout , Microglia/metabolism , NF-kappa B/metabolism , Signal Transduction , Receptors, G-Protein-Coupled/metabolism
10.
Article En | MEDLINE | ID: mdl-38414718

Purpose: The study comprehensively evaluated the prognostic roles of the platelet-to-lymphocyte ratio (PLR), neutrophil-to-lymphocyte ratio (NLR), monocyte-to-lymphocyte ratio (MLR), basophil-to-lymphocyte ratio (BLR), and eosinophil-to-lymphocyte ratio (ELR) in patients with acute exacerbation of chronic obstructive pulmonary disease (AECOPD). Patients and Methods: Six hundred and nineteen patients with AECOPD and 300 healthy volunteers were retrospectively included into the study. The clinical characteristics of the patients with AECOPD and the complete blood counts (CBCs) of the healthy volunteers were collected. The associations of PLR, NLR, MLR, BLR, and ELR with airflow limitation, hospital length of stay (LOS), C-reactive protein (CRP), and in-hospital mortality in patients with AECOPD were analyzed. Results: Compared with the healthy volunteers, PLR, NLR, MLR, BLR, and ELR were all elevated in COPD patients under stable condition. PLR, NLR, MLR, and BLR were further elevated while ELR was lowered during exacerbation. In the patients with AECOPD, PLR, NLR, and MLR were positively correlated with hospital LOS as well as CRP. In contrast, ELR was negatively correlated with hospital LOS as well as CRP. Elevated PLR, NLR, and MLR were all associated with more severe airflow limitation in AECOPD. Elevated PLR, NLR, and MLR were all associated with increased in-hospital mortality while elevated ELR was associated with decreased in-hospital mortality. Binary logistic regression analysis showed that smoking history, FEV1% predicted, pneumonia, pulmonary heart disease (PHD), uric acid (UA), albumin, and MLR were significant independent predictors ofin-hospital mortality. These predictors along with ELR were used to construct a nomogram for predicting in-hospital mortality in AECOPD. The nomogram had a C-index of 0.850 (95% CI: 0.799-0.901), and the calibration curve, decision curve analysis (DCA), and clinical impact curve (CIC) further demonstrated its good predictive value and clinical applicability. Conclusion: In summary, PLR, NLR, MLR, and ELR served as useful biomarkers in patients with AECOPD.


Neutrophils , Pulmonary Disease, Chronic Obstructive , Humans , Monocytes , Eosinophils , Retrospective Studies , Lymphocytes , Biomarkers , Prognosis , C-Reactive Protein/analysis
11.
BMC Biol ; 22(1): 33, 2024 Feb 08.
Article En | MEDLINE | ID: mdl-38331785

BACKGROUND: Ribosomal protein SA (RPSA) of human brain microvascular endothelial cells (HBMECs) can transfer from the cytosol to the cell surface and act as a receptor for some pathogens, including Streptococcus suis serotype 2 (SS2), a zoonotic pathogen causing meningitis in pigs and humans. We previously reported that SS2 virulence factor enolase (ENO) binds to RPSA on the cell surface of HBMECs and induces apoptosis. However, the mechanism that activates RPSA translocation to the cell surface and induces ENO-mediated HBMEC apoptosis is unclear. RESULTS: Here, we show that RPSA localization and condensation on the host cell surface depend on its internally disordered region (IDR). ENO binds to the IDR of RPSA and promotes its interaction with RPSA and vimentin (VIM), which is significantly suppressed after 1,6-Hexanediol (1,6-Hex, a widely used tool to disrupt phase separation) treatment, indicating that ENO incorporation and thus the concentration of RPSA/VIM complexes via co-condensation. Furthermore, increasing intracellular calcium ions (Ca2+) in response to SS2 infection further facilitates the liquid-like condensation of RPSA and aggravates ENO-induced HBMEC cell apoptosis. CONCLUSIONS: Together, our study provides a previously underappreciated molecular mechanism illuminating that ENO-induced RPSA condensation activates the migration of RPSA to the bacterial cell surface and stimulates SS2-infected HBMEC death and, potentially, disease progression. This study offers a fresh avenue for investigation into the mechanism by which other harmful bacteria infect hosts via cell surfaces' RPSA.


Streptococcal Infections , Streptococcus suis , Humans , Animals , Swine , Endothelial Cells/metabolism , Serogroup , Phosphopyruvate Hydratase/genetics , Phosphopyruvate Hydratase/metabolism , Brain/metabolism , Apoptosis , Ribosomal Proteins/metabolism , Streptococcal Infections/metabolism , Streptococcal Infections/microbiology
12.
Int J Biol Macromol ; 261(Pt 1): 129797, 2024 Mar.
Article En | MEDLINE | ID: mdl-38290625

FGF21 plays an active role in the treatment of type 2 diabetes, obesity, nonalcoholic fatty liver disease (NAFLD), and nonalcoholic steatohepatitis (NASH). However, the short half-life and poor stability of wild-type FGF21 limit its clinical application. Previous studies found that PEGylation can significantly increase the stability of FGF21. However, the uneven distribution of PEGylation sites in FGF21 makes it difficult to purify PEG-FGF21, thereby affecting its yield, purity, and activity. To obtain long-acting FGF21 with controlled site-specific modification, we mutated lysine residues in FGF21, resulting in PEGylation only at the N-terminus of FGF21 (mFGF21). In addition, we modified mFGF21 molecules with different PEG molecules and selected the PEG-mFGF21 moiety with the highest activity. The yield of PEG-mFGF21 in this study reached 1 g/L (purity >99 %), and the purification process was simple and efficient with strong quality controllability. The half-life of PEG-mFGF21 in rats reached 40.5-67.4 h. Pharmacodynamic evaluation in mice with high-fat, high-cholesterol- and methionine and choline deficiency-induced NASH illustrated that PEG-mFGF21 exhibited long-term efficacy in improving liver steatosis and reducing liver cell damage, inflammation, and fibrosis. Taken together, PEG-mFGF21 could represent a potential therapeutic drug for the treatment of NASH.


Diabetes Mellitus, Type 2 , Non-alcoholic Fatty Liver Disease , Mice , Rats , Animals , Non-alcoholic Fatty Liver Disease/drug therapy , Diabetes Mellitus, Type 2/drug therapy , Fibroblast Growth Factors/genetics , Fibroblast Growth Factors/therapeutic use , Fibroblast Growth Factors/pharmacology , Obesity/drug therapy , Liver
13.
Hepatobiliary Pancreat Dis Int ; 23(3): 300-309, 2024 Jun.
Article En | MEDLINE | ID: mdl-38057185

BACKGROUND: Visceral adipose tissue (VAT) has been linked to the severe acute pancreatitis (SAP) prognosis, although the underlying mechanism remains unclear. It has been reported that pyroptosis worsens SAP. The present study aimed to verify whether mesenteric adipose tissue (MAT, a component of VAT) can cause secondary intestinal injury through the pyroptotic pathway. METHODS: Thirty-six male Sprague Dawley (SD) rats were divided into six different groups. Twelve rats were randomly divided into the SAP and control groups. We monitored the changes of MAT and B lymphocytes infiltration in MAT of SAP rats. Twelve SAP rats were injected with MAT B lymphocytes or phosphate buffer solution (PBS). The remaining twelve SAP rats were first injected with MAT B lymphocytes, and then with MCC950 (NLRP3 inhibitor) or PBS. We collected blood and tissue samples from pancreas, gut and MAT for analysis. RESULTS: Compared to the control rats, the SAP group showed inflammation in MAT, including higher expression of tumor necrosis factor (TNF-α) and interleukin-6 (IL-6), lower expression of IL-10, and histological changes. Flow cytometry analysis revealed B lymphocytes infiltration in MAT but not T lymphocytes and macrophages. The SAP rats also exhibited intestinal injury, characterized by lower expression of zonula occludens-1 (ZO-1) and occludin, higher levels of lipopolysaccharide and diamine oxidase, and pathological changes. The expression of NLRP3 and n-GSDMD, which are responsible for pyroptosis, was increased in the intestine of SAP rats. The injection of MAT B lymphocytes into SAP rats exacerbated the inflammation in MAT. The upregulation of pyroptosis reduced tight junction in the intestine, which contributed to the SAP progression, including higher inflammatory indicators and worse histological changes. The administration of MCC950 to SAP + MAT B rats downregulated pyroptosis, which subsequently improved the intestinal barrier and ameliorated inflammatory response of SAP. CONCLUSIONS: In SAP, MAT B lymphocytes aggravated local inflammation, and promoted the injury to the intestine through the enteric pyroptotic pathway.


Pancreatitis , Rats , Male , Animals , Pancreatitis/chemically induced , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Rats, Sprague-Dawley , Intestinal Mucosa , Pyroptosis , Acute Disease , Inflammation/metabolism , Tumor Necrosis Factor-alpha , Adipose Tissue/metabolism , Adipose Tissue/pathology , B-Lymphocytes/metabolism , B-Lymphocytes/pathology
14.
Int J Radiat Biol ; 100(3): 411-419, 2024.
Article En | MEDLINE | ID: mdl-37934908

BACKGROUND: Nanocarrier systems have been used in the study of esophageal cancer (EC) and other diseases, with significant advantages in improving the non-targeted and nonspecific toxicity of traditional formulations. Some chemotherapeutic drugs and high atomic number nanomaterials have sensitization effects on ionizing radiation and can be used as chemoradiation sensitizers. METHODS: Aurum (Au) nanoparticles were modified by bovine serum albumin (BSA) and folic acid (FA), and were core-loaded with paclitaxel (PTX) and curcumin (CUR). The basic characteristics of FA-BSA-Au@PTX/CUR nanomedicines were evaluated by transmission electron microscopy, Fourier transform infrared spectroscopy, and Malvern Zetasizer. The encapsulation and release of drugs were monitored by ultraviolet-visible spectrophotometry (UV-Vis). The biological toxicity and radiotherapy sensitization effect of FA-BSA-Au@PTX/CUR were observed by cell viability, colony formation, cell apoptosis, cell cycle distribution, and γ-H2AX analysis experiments. RESULTS: The prepared nanomedicines showed good stability and spherical morphology. The results of cell uptake and cell viability detection revealed that FA-BSA-Au@PTX/CUR could specifically target EC cell KYSE150 and exert a certain inhibitory effect on proliferation, with no obvious toxicity on healthy cells Het-1A. In addition, the results of the colony formation experiment, cell apoptosis detection, cell cycle distribution, and γ-H2AX analysis showed that compared with X-rays alone, FA-BSA-Au@PTX/CUR combined with X-rays exhibited relatively stronger radiotherapy sensitization and anti-tumor activity. CONCLUSIONS: FA-BSA-Au@PTX/CUR could target EC cancer cells and act as a safe and effective radiotherapy sensitizer to improve the radiotherapy efficacy of EC.


Curcumin , Esophageal Neoplasms , Nanoparticles , Humans , Paclitaxel/chemistry , Curcumin/pharmacology , Serum Albumin, Bovine/chemistry , Folic Acid/pharmacology , Folic Acid/chemistry , Esophageal Neoplasms/radiotherapy , Esophageal Neoplasms/drug therapy , Nanoparticles/chemistry , Drug Carriers/chemistry , Cell Line, Tumor
15.
Neuromodulation ; 27(2): 295-301, 2024 Feb.
Article En | MEDLINE | ID: mdl-37930296

OBJECTIVE: Sacral nerve stimulation (SNS) is emerging as a novel treatment for irritable bowel syndrome (IBS). However, its effects are limited, and the underlying mechanisms remain largely unknown. MATERIALS AND METHODS: In this study, rats were divided into three groups (n = 12 rats per group): 1) the SNS group; 2) the sham SNS group (the sham group for short); and 3) the control group. The SNS and sham groups were exposed to chronic and acute stress to establish an IBS model. Electrode implantation surgery was performed in rats with the IBS model. The SNS group received electrical stimulation for 30 minutes every day for seven days. Abdominal withdrawal reflex (AWR) was used to evaluate the effect of SNS on visceral sensitivity in diarrhea-predominant IBS (IBS-D) rats. The frequency domain of heart rate variability (HRV) was analyzed to assess the effect of SNS on regulating the autonomic function. The expression of transient receptor potential vanilloid 1 (TRPV1) in the colon, spinal cord, and hippocampus was detected by immunohistochemistry to explore the mechanism of SNS in IBS-D rats. RESULTS: Compared with the sham group, AWR scores were significantly decreased under different gas volumes of stimulation of 0.4, 0.6, and 0.8 ml for rectal distention in the SNS group (all p < 0.05). However, there was no significant difference <1.0 ml between the two groups (p > 0.05). Compared with the sham group, the frequency domain indexes of HRV were significantly altered. Normalized low-frequency power and low frequency-to-high frequency ratio were significantly decreased, and normalized high-frequency power was significantly increased in the SNS group (all p < 0.05). Moreover, the expression of TRPV1 in the spinal cord and colon in the SNS group was significantly decreased compared with the sham group (both p < 0.05). These results suggested that chronic SNS not only improved the visceral sensitivity and autonomic dysfunction but also decreased the expression of TRPV1 in the spinal cord-gut tissue in IBS-D rats. CONCLUSION: Chronic SNS was found to have an inhibitory effect on visceral hypersensitivity in IBS-D rats, providing experimental evidence for its potential clinical application in IBS.


Irritable Bowel Syndrome , Rats , Animals , Irritable Bowel Syndrome/therapy , Rats, Sprague-Dawley , Spinal Cord , Diarrhea
16.
Cell Immunol ; 395-396: 104781, 2024.
Article En | MEDLINE | ID: mdl-38159414

Pulmonary sarcoidosis is an immune-mediated disorder closely related to Th17/Treg cell imbalance. Dexamethasone has been shown to regulate inflammation and immune responses in sarcoidosis patients. However, the underlying mechanisms of dexamethasone regulating Th17/Treg balance in sarcoidosis remain elusive. Herein, we elucidated the function role of TGF-ß/Smad3 signaling in pulmonary sarcoidosis development and explored the underlying mechanism of dexamethasone in treating pulmonary sarcoidosis. We found that the TGF-ß/Smad3 pathway was inactivated in pulmonary sarcoidosis patients. Propionibacterium acnes (PA) induced mouse model was generated to investigate the function of TGF-ß/Smad3 signaling in vivo. Data indicated that IL17A inhibition with neutralizing antibody and activation of TGF-ß/Smad3 signaling with SRI-011381 alleviated granuloma formation in the sarcoidosis mouse model. Moreover, we revealed that the Th17/Treg cell ratio was increased with PA treatment in mouse bronchoalveolar lavage fluid (BALF) and peripheral blood. The concentration of cytokines produced by Th17 cells (IL-17A, IL-23) was up-regulated in the BALF of PA-treated mice, while those produced by Tregs (IL-10, TGF-ß1) presented significant reduction. The treatment of IL-17A neutralizing antibody or SRI-011381 was demonstrated to rescue the PA-induced changes in the concentration of IL-17A, IL-23, IL-10, and TGF-ß1. Additionally, we demonstrated that dexamethasone treatment activated the TGF-ß/Smad3 signaling in the lung tissues of pulmonary sarcoidosis mice. Dexamethasone was also revealed to promote the rebalancing of the Th17/Treg ratio and attenuated the granuloma formation in pulmonary sarcoidosis. In conclusion, dexamethasone activates the TGF-ß/Smad3 signaling and induces Th17/Treg rebalance, alleviating pulmonary sarcoidosis, which suggests the potential of dexamethasone in treating pulmonary sarcoidosis.


Dexamethasone , Sarcoidosis, Pulmonary , Animals , Humans , Mice , Antibodies, Neutralizing/pharmacology , Dexamethasone/pharmacology , Dexamethasone/therapeutic use , Granuloma/prevention & control , Interleukin-10/metabolism , Interleukin-17 , Interleukin-23/metabolism , Sarcoidosis, Pulmonary/drug therapy , T-Lymphocytes, Regulatory , Th17 Cells , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta1
17.
Vet Microbiol ; 288: 109943, 2024 Jan.
Article En | MEDLINE | ID: mdl-38113574

O-acetyl-homoserine sulfhydrylase (OAHS) is a pyridoxal 5'-phosphate-dependent enzyme involved in microbial methionine biosynthesis, which catalyzes the conversion of o-acetyl-homoserine (OAH) to homocysteine. In our previous study, we found that OAHS of Streptococcus suis serotype 2 (SS2) can interact with the porcine blood-brain barrier (BBB) model, but whether OAHS regulates the penetration of BBB during SS2 infection is still unclear. To explore the role of OAHS in SS2 infection, OAHS-deficient SS2 mutant strain (SC19-ΔOAHS) and gene complemental strain (SC19-cΔOAHS) were constructed. Compared to the parent strain, with the loss of oahs, the chain length of SC19-ΔOAHS was shortened, the virulence was significantly reduced, the survival rate of mice infected with SC19-ΔOAHS was obviously increased accompanied by the relieved clinical symptoms. And the survival ability of SC19-ΔOAHS in whole blood was also remarkably decreased. Interestingly, the adhesion of SC19-ΔOAHS to endothelial cells was markedly increased, but the deficiency of OAHS significantly inhibited the strain penetrating BBB both in vivo and in vitro. Most of these phenomena can be reversed by the complemental strain (SC19-cΔOAHS). Further study showed that the deficiency of OAHS severely reduced SC19-induced endothelial cell apoptosis, tight junctions (TJs) protein impairment and the expression of SS2 virulence factor Enolase (Eno), involved in the destruction of BBB. Additionally, SC19-ΔOAHS immunized mice were able to resist SC19 or JZLQ022 infection. In conclusion, we confirmed that OAHS promoted the pathogenicity by enhancing host's BBB permeability and immune escape, and SC19- ΔOAHS is a potential live vaccine.


Streptococcal Infections , Streptococcus suis , Swine Diseases , Animals , Mice , Endothelial Cells , Homoserine/genetics , Serogroup , Streptococcal Infections/veterinary , Swine , Swine Diseases/metabolism , Virulence
18.
Angew Chem Int Ed Engl ; 62(51): e202312102, 2023 Dec 18.
Article En | MEDLINE | ID: mdl-37936319

The exploration of value-added conversions of naturally abundant amino acids has received considerable attention from the synthetic community. Compared with the well-established asymmetric decarboxylative transformation, the asymmetric deaminative transformation of amino acids still remains a formidable challenge, mainly due to the lack of effective strategies for the C-N bond activation and the potential incompatibility with chiral catalysts. Here, we disclose a photoinduced Cu-catalyzed asymmetric deaminative coupling reaction of amino acids with arylboronic acids. This new protocol provides a series of significant chiral phenylacetamides in generally good yields and excellent stereoselectivity under mild and green conditions (42-85 % yields, up to 97 % ee). Experimental investigations and theoretical calculations were performed to reveal the crucial role of additional phenols in improving catalytic efficiency and enantiocontrol.

19.
World J Clin Cases ; 11(29): 6995-7003, 2023 Oct 16.
Article En | MEDLINE | ID: mdl-37946753

BACKGROUND: Sessile serrated lesions (SSLs) are often missed on colonoscopy, and studies have shown this to be an essential cause of interstitial colorectal cancer. The SSLs with dysplasia (SSL-D+), in particular, have a faster rate of carcinogenesis than conventional tubular adenomas. Therefore, there is a clinical need for some endoscopic features with independent diagnostic value for SSL-D+s to assist endoscopists in making immediate diagnoses, thus improving the quality of endoscopic examination and treatment. AIM: To compare the characteristics of SSLs, including those with and without dysplasia (SSL-D+ and SSL-D-), based on white light and image-enhanced endoscopy, to achieve an immediate differential diagnosis for endoscopists. METHODS: From January 2017 to February 2023, cases of colorectal SSLs confirmed by colonoscopy and histopathology at the Gastrointestinal Endoscopy Center of Beijing Tsinghua Changgung Hospital were collected. The general, endoscopic, and histopathological data were reviewed and analyzed to determine the diagnostic utility. Univariate analysis was used to find potential diagnostic factors, and then multivariate regression analysis was performed to derive endoscopic features with independent diagnostic values for the SSL-D+. RESULTS: A total of 228 patients with 253 lesions were collected as a result. There were 225 cases of colorectal SSL-D-s and 28 cases of SSL-D+s. Compared to the colorectal SSL-D-, the SSL-D+ was more common in the right colon (P = 0.027) with complex patterns of depression, nodule, and elevation based on cloud-like surfaces (P = 0.003), reddish (P < 0.001), microvascular varicose (P < 0.001), and mixed type (Pit II, II-O, IIIL, IV) of crypt opening based on Pit II-O (P < 0.001). Multifactorial logistic regression analysis indicated that lesions had a reddish color [odds ratio (OR) = 18.705, 95% confidence interval (CI): 3.684-94.974], microvascular varicose (OR = 6.768, 95%CI: 1.717-26.677), and mixed pattern of crypt opening (OR = 20.704, 95%CI: 2.955-145.086) as the independent predictors for SSL-D+s. CONCLUSION: The endoscopic feature that has independent diagnostic value for SSL-D+ is a reddish color, microvascular varicose, and mixed pattern of crypt openings.

20.
Int J Biol Macromol ; 253(Pt 5): 127202, 2023 Dec 31.
Article En | MEDLINE | ID: mdl-37793530

The typical function of Drosha is participating in cleaving pri-miRNA, the initial step of miRNA biogenesis, in the nucleus. Since Drosha has a double-stranded RNA-binding domain and two RNase III domains, when it binds and/or cleaves other RNA species other than pri-miRNA, Drosha is able to induce a variety of novel biological effects. Moreover, by interacting with other protein, Drosha is able to modify the function of other protein complexes. Recently, diverse non-classical functions of Drosha have been demonstrated, such as promoting DNA damage repair, transcriptional activation and inhibition, pre-mRNA splicing regulation, mRNA destabilization, and virus-host interaction. In this review, we describe these newly discovered functions of Drosha in order to present a panoramic picture of the novel biological processes that Drosha is involved in.


MicroRNAs , Ribonuclease III , Ribonuclease III/genetics , Ribonuclease III/metabolism , MicroRNAs/genetics , Proteins/metabolism , Gene Expression Regulation , RNA Processing, Post-Transcriptional
...