Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 21
1.
Angew Chem Int Ed Engl ; : e202400441, 2024 Apr 08.
Article En | MEDLINE | ID: mdl-38587149

Nickel-catalyzed transannulation reactions triggered by the extrusion of small gaseous molecules have emerged as a powerful strategy for the efficient construction of heterocyclic compounds. However, their use in asymmetric synthesis remains challenging because of the difficulty in controlling stereo- and regioselectivity. Herein, we report the first nickel-catalyzed asymmetric synthesis of N-N atropisomers by the denitrogenative transannulation of benzotriazones with alkynes. A broad range of N-N atropisomers was obtained with excellent regio- and enantioselectivity under mild conditions. Moreover, density functional theory (DFT) calculations provided insights into the nickel-catalyzed reaction mechanism and enantioselectivity control.

2.
Cell Prolif ; : e13604, 2024 Feb 06.
Article En | MEDLINE | ID: mdl-38318762

Orthodontic tooth movement (OTM) is a highly coordinated biomechanical response to orthodontic forces with active remodelling of alveolar bone but minor root resorption. Such antiresorptive properties of root relate to cementocyte mineralization, the mechanisms of which remain largely unknown. This study used the microarray analysis to explore long non-coding ribonucleic acids involved in stress-induced cementocyte mineralization. Gain- and loss-of-function experiments, including Alkaline phosphatase (ALP) activity and Alizarin Red S staining, quantitative real-time polymerase chain reaction (qRT-PCR), Western blot, and immunofluorescence analyses of mineralization-associated factors, were conducted to verify long non-coding ribonucleic acids taurine-upregulated gene 1 (LncTUG1) regulation in stress-induced cementocyte mineralization, via targeting the Toll-like receptor 4 (TLR4)/SphK1 axis. The luciferase reporter assays, chromatin immunoprecipitation assays, RNA pull-down, RNA immunoprecipitation, and co-localization assays were performed to elucidate the interactions between LncTUG1, PU.1, and TLR4. Our findings indicated that LncTUG1 overexpression attenuated stress-induced cementocyte mineralization, while blocking the TLR4/SphK1 axis reversed the inhibitory effect of LncTUG1 on stress-induced cementocyte mineralization. The in vivo findings also confirmed the involvement of TLR4/SphK1 signalling in cementocyte mineralization during OTM. Mechanistically, LncTUG1 bound with PU.1 subsequently enhanced TLR4 promotor activity and thus transcriptionally elevated the expression of TLR4. In conclusion, our data revealed a critical role of LncTUG1 in regulating stress-induced cementocyte mineralization via PU.1/TLR4/SphK1 signalling, which might provide further insights for developing novel therapeutic strategies that could protect roots from resorption during OTM.

3.
Am J Orthod Dentofacial Orthop ; 165(4): 458-470, 2024 Apr.
Article En | MEDLINE | ID: mdl-38189707

INTRODUCTION: The mechanosensitive ion channel, Piezo1, is responsible for transducing mechanical stimuli into intracellular biochemical signals and has been identified within periodontal ligament cells (PDLCs). Nonetheless, the precise biologic function of Piezo1 in the regulation of alveolar bone remodeling by PDLCs during compressive forces remains unclear. Therefore, this study focused on elucidating the role of the Piezo1 channel in alveolar bone remodeling and uncovering its underlying mechanisms. METHODS: PDLCs were subjected to compressive force and Piezo1 inhibitors. Piezo1 and ß-catenin expressions were quantified by quantitative reverse transcription polymerase chain reaction and Western blot. The intracellular calcium concentration was measured using Fluo-8 AM staining. The osteogenic and osteoclastic activities were assessed using alkaline phosphatase staining, enzyme-linked immunosorbent assay, quantitative reverse transcription polymerase chain reaction, and Western blot. In vivo, orthodontic tooth movement was used to determine the effects of Piezo1 on alveolar bone remodeling. RESULTS: Piezo1 and activated ß-catenin expressions were upregulated under compressive force. Piezo1 inhibition reduced ß-catenin activation, osteogenic differentiation, and osteoclastic activities. ß-catenin knockdown reversed the increased osteogenic differentiation but had little impact on osteoclastic activities. In vivo, Piezo1 inhibition led to decreased tooth movement distance, accompanied by reduced ß-catenin activation and expression of osteogenic and osteoclastic markers on the compression side. CONCLUSIONS: The Piezo1 channel is a key mechanotransduction component of PDLCs that senses compressive force and activates ß-catenin to regulate alveolar bone remodeling.


Osteogenesis , beta Catenin , Humans , beta Catenin/metabolism , Cells, Cultured , Mechanotransduction, Cellular , Periodontal Ligament , Bone Remodeling/physiology , Cell Differentiation/physiology
4.
Cell Prolif ; 57(2): e13546, 2024 Feb.
Article En | MEDLINE | ID: mdl-37731335

Scaffold protein AF4/FMR2 family member 4 (AFF4) has been found to play a role in osteogenic commitment of stem cells. However, function of AFF4 in human periodontal ligament stem cells (hPDLSCs) has not been studied yet. This present study aims to investigate the biological effect of AFF4 on osteogenic differentiation of hPDLSCs and potential mechanistic pathway. First, AFF4 expression profile was evaluated in conditions of periodontitis and osteogenic differentiation of hPDLSCs by immunohistochemical staining, western blot and qRT-PCR. Next, si-RNA mediated knockdown and lentiviral transduction mediated overexpression of AFF4 were adopted to explore impact of AFF4 on osteogenic capacity of hPDLSCs. Then, possible mechanistic pathway was identified. At last, pharmacological agonist of autophagy, rapamycin, was utilized to affirm the role of autophagy in AFF4-regulated osteogenesis of hPDLSCs. First, AFF4 expressions were significantly lower in inflamed periodontal tissues and lipopolysaccharides-treated hPDLSCs than controls, and were up-regulated during osteogenic differentiation of hPDLSCs. Next, osteogenic potential of hPDLSCs was impaired by AFF4 knockdown and potentiated by AFF4 overexpression. Moreover, AFF4 was found to positively regulate autophagic activity in hPDLSCs. At last, rapamycin treatment was shown to be able to partly restore AFF4 knockdown-suppressed osteogenic differentiation. Our study demonstrates that AFF4 regulates osteogenic potential of hPDLSCs via targeting autophagic activity. The involvement of AFF4 in periodontal homeostasis was identified for the first time.


Osteogenesis , Periodontal Ligament , Humans , Autophagy-Related Protein-1 Homolog , Cell Differentiation , Cells, Cultured , Intracellular Signaling Peptides and Proteins , Sirolimus/pharmacology , Stem Cells , TOR Serine-Threonine Kinases , Transcription Factors , Transcriptional Elongation Factors
5.
Poult Sci ; 103(2): 103260, 2024 Feb.
Article En | MEDLINE | ID: mdl-38096665

Growth performance and carcass traits may be retarded by low nutrient density diets. Organic chromium propionate (CrProp) can improve growth, carcass traits, and meat quality in farmed lambs, white broilers, and fish. Limited data regarding CrProp's impacts on yellow-feathered broilers are available. Eight hundred yellow-feathered male broilers (1-day old) were randomly allocated to 4 dietary groups and reared for 56 d. The trial was a 2 (dietary nutrient density) ×2 (CrProp) factorial arrangement with 4 diets: regular nutrient diet and low nutrient density (LND, reduction in metabolizable energy by 81 kcal and crude protein by 0.43%) diet supplemented with or without 200 mg/kg CrProp. Broilers were euthanized at d 56 after blood collection. The results indicated that the LND diet led to greater average daily feed intake (ADFI) from d 1 to 42 and feed conversion ratio (FCR) from d 22 to 42 (P < 0.05). Supplementation of CrProp improved body weight (BW) from d 1 to 56, average daily gain (ADG), and FCR during d 1 to 42 but reduced ADFI during d 1 to 21, as well as lowered abdominal fat percentage (P < 0.05). Supplementation with CrProp to regular and LND diets reduced ADFI but improved FCR from d 1 to 21 (P < 0.05). The LND diet lowered total antioxidant capacity (T-AOC) concentration and total superoxide dismutase (T-SOD) activity in the jejunal mucosa. CrProp elevated T-AOC levels and glutathione peroxidase activity (GSH-Px, P < 0.05). Dietary CrProp upregulated (P < 0.05) the expression of fatty acid transporter (FABP1) gene and peptide transporter (Pept1) gene. CrProp administration increased jejunal FABP1 expression and lowered cooking loss of breast meat (P < 0.05) in the LND group while reducing shear force (P = 0.009) of broilers treated by regular diet. In summary, CrProp administration to the LND diet can improve growth performance in the starter period and meat quality on d 56, possibly through upregulated nutrient transporter gene expression in the jejunum and enhanced antioxidant capability.


Antioxidants , Chickens , Propionates , Animals , Male , Sheep , Antioxidants/metabolism , Dietary Supplements , Diet/veterinary , Meat/analysis , Animal Feed/analysis , Animal Nutritional Physiological Phenomena
6.
Eur J Oral Sci ; 131(5-6): e12955, 2023.
Article En | MEDLINE | ID: mdl-37805702

Adenosine monophosphate-activated protein kinase (AMPK) plays pivotal roles in metabolic diseases including type 2 diabetes. However, the specific role of AMPK for orthodontic tooth movement in type 2 diabetes is unclear. In this study, a diabetic rat model was established through dietary manipulation and streptozocin injection. Examinations were conducted to select qualified type 2 diabetic rats. Then, an orthodontic device was applied to these rats for 0, 3, 7, or 14 days. The distance of orthodontic tooth movement and parameters of alveolar bone were analyzed by micro-computed tomography. Periodontal osteoclastic activity, inflammatory status, and AMPK activity were measured via histological analyses. Next, we repeated the establishment of diabetic rats to investigate whether change of AMPK activity was associated with orthodontic tooth movement under type 2 diabetes. The results showed that diabetic rats exhibited an exacerbated alveolar bone resorption, overactive inflammation, and decreased periodontal AMPK activity during orthodontic tooth movement. Injection of the AMPK agonist alleviated type 2 diabetes-induced periodontal inflammation and alveolar bone resorption, thus normalizing distance of orthodontic tooth movement. Our study indicates that type 2 diabetes decreases periodontal AMPK activity, leading to excessive inflammation elevating osteoclast formation and alveolar bone resorption, which could be reversed by AMPK activation.


Alveolar Bone Loss , Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Rats , Animals , Diabetes Mellitus, Type 2/complications , Tooth Movement Techniques/methods , X-Ray Microtomography , AMP-Activated Protein Kinases , Alveolar Bone Loss/diagnostic imaging , Inflammation , Periodontal Ligament
7.
Int J Oral Sci ; 15(1): 33, 2023 08 09.
Article En | MEDLINE | ID: mdl-37558690

Orthodontically induced tooth root resorption (OIRR) is a serious complication during orthodontic treatment. Stimulating cementum repair is the fundamental approach for the treatment of OIRR. Parathyroid hormone (PTH) might be a potential therapeutic agent for OIRR, but its effects still lack direct evidence, and the underlying mechanisms remain unclear. This study aims to explore the potential involvement of long noncoding RNAs (lncRNAs) in mediating the anabolic effects of intermittent PTH and contributing to cementum repair, as identifying lncRNA-disease associations can provide valuable insights for disease diagnosis and treatment. Here, we showed that intermittent PTH regulates cell proliferation and mineralization in immortalized murine cementoblast OCCM-30 via the regulation of the Wnt pathway. In vivo, daily administration of PTH is sufficient to accelerate root regeneration by locally inhibiting Wnt/ß-catenin signaling. Through RNA microarray analysis, lncRNA LITTIP (LGR6 intergenic transcript under intermittent PTH) is identified as a key regulator of cementogenesis under intermittent PTH. Chromatin isolation by RNA purification (ChIRP) and RNA immunoprecipitation (RIP) assays revealed that LITTIP binds to mRNA of leucine-rich repeat-containing G-protein coupled receptor 6 (LGR6) and heterogeneous nuclear ribonucleoprotein K (HnRNPK) protein. Further co-transfection experiments confirmed that LITTIP plays a structural role in the formation of the LITTIP/Lgr6/HnRNPK complex. Moreover, LITTIP is able to promote the expression of LGR6 via the RNA-binding protein HnRNPK. Collectively, our results indicate that the intermittent PTH administration accelerates root regeneration via inhibiting Wnt pathway. The lncRNA LITTIP is identified to negatively regulate cementogenesis, which activates Wnt/ß-catenin signaling via high expression of LGR6 promoted by HnRNPK.


Cementogenesis , RNA, Long Noncoding , Mice , Animals , Wnt Signaling Pathway , beta Catenin/metabolism , Heterogeneous-Nuclear Ribonucleoprotein K/metabolism , RNA, Long Noncoding/genetics , Parathyroid Hormone , Receptors, G-Protein-Coupled/metabolism
8.
Orthod Craniofac Res ; 26(1): 107-116, 2023 Feb.
Article En | MEDLINE | ID: mdl-35621382

OBJECTIVE: The aim of this study was to investigate the role of ephrinB2-EphB4 signalling in alveolar bone remodelling on the tension side during orthodontic tooth movement (OTM). MATERIALS AND METHODS: An OTM model was established on sixty 8-week-old male Wistar rats. They were randomly divided into the experimental group and the control group. The animals in the experimental group were administrated with subcutaneous injection of EphB4 inhibitor NVP-BHG712 every other day, whereas the control group received only the vehicle. Samples containing the maxillary first molar and the surrounding bone were collected after 0, 3, 7, 14 and 21 days of tooth movement. RESULTS: EphrinB2-EphB4 signalling was actively expressed on the tension side during tooth movement. Micro-CT analysis showed the distance of tooth movement in the experimental group was significantly greater than that of the control group (P < .05) with significantly increased trabecular separation (Tb. Sp) and decreased trabecular number (Tb. N) from day 14 to day 21. The number of osteoclasts significantly increased in the experimental group compared with the control group after 3 and 7 days of tooth movement (P < .05). The expressions of alkaline phosphatase (ALP) and osteopontin (OPN) were significantly reduced by inhibition of EphB4 (P < .05). CONCLUSION: The inhibition of EphB4 suppressed bone formation and enhanced bone resorption activities on the tension side of tooth movement. The ephrinB2-EphB4 signalling might play an important role in alveolar bone remodelling during OTM.


Ephrin-B2 , Tooth Movement Techniques , Animals , Male , Rats , Bone Remodeling , Ephrin-B2/metabolism , Osteoclasts/metabolism , Rats, Wistar , Ephrins/metabolism , Signal Transduction
9.
Cells ; 11(21)2022 10 26.
Article En | MEDLINE | ID: mdl-36359775

Periodontitis is a periodontal inflammatory condition that results from disrupted periodontal host-microbe homeostasis, manifested by the destruction of tooth-supporting structures, especially inflammatory alveolar bone loss. Osteoporosis is characterized by systemic deterioration of bone mass and microarchitecture. The roles of many systemic factors have been identified in the pathogenesis of osteoporosis, including endocrine change, metabolic disorders, health-impaired behaviors and mental stress. The prevalence rate of osteoporotic fracture is in sustained elevation in the past decades. Recent studies suggest that individuals with concomitant osteoporosis are more vulnerable to periodontal impairment. Current reviews of worse periodontal status in the context of osteoporosis are limited, mainly centering on the impacts of menopausal and diabetic osteoporosis on periodontitis. Herein, this review article makes an effort to provide a comprehensive view of the relationship between osteoporosis and periodontitis, with a focus on clarifying how those risk factors in osteoporotic populations modify the alveolar bone homeostasis in the periodontitis niche.


Alveolar Bone Loss , Osteoporosis , Periodontal Diseases , Periodontitis , Humans , Bone Density , Osteoporosis/complications , Periodontitis/complications , Alveolar Bone Loss/complications , Risk Factors
10.
Oral Dis ; 2022 Sep 01.
Article En | MEDLINE | ID: mdl-36050281

OBJECTIVE: This study aims to clarify the effects of diabetes mellitus (DM) on inflammatory profile during orthodontic tooth movement (OTM) and explore potential mechanisms. METHODS: OTM models were established in healthy (Ctrl) and DM rats for 0, 3, 7 or 14 days. The tooth movement distance and bone structural parameters were analyzed through micro-CT. The bone resorption activity and periodontal inflammation status were evaluated through histological staining. RNA sequencing was performed to detect differentially expressed genes in force loading-treated periodontal ligament fibroblasts (PDLFs) with or without high glucose. The differential expression of inflammatory genes associated with NOD-like receptor family pyrin domain containing 3 (NLRP3) between groups was tested in vitro and in vivo. RESULTS: DM caused remarkable reduction of alveolar bone height and density around the moved tooth, corresponding with the higher bone resorption activity and inflammatory scores of DM group. For force loading-treated PDLFs, high glucose induced the activation of inflammatory pathways, including NLRP3. Elevated expression of NLRP3 and cascade molecules (Caspase-1, GSDMD, and IL-1ß) were validated by RT-qPCR, Western blot, and immunohistochemistry staining. CONCLUSIONS: DM alters the inflammatory status of periodontium and affects tissue reconstruction during OTM. NLRP3 inflammasome may involve in diabetes-induced periodontal changes.

11.
J Periodontol ; 93(11): 1725-1737, 2022 11.
Article En | MEDLINE | ID: mdl-35642884

BACKGROUND: To date, therapeutic approaches for cementum regeneration are limited and outcomes remain unpredictable. A significant barrier to improve therapies for cementum regeneration is that the cementocyte and its intracellular signal transduction mechanisms remain poorly understood. This study aims to elucidate the regulatory mechanism of Wnt pathway in cementogenesis. METHODS: The effects of canonical Wnt signaling were compared in vitro using immortalized murine cementocyte cell line IDG-CM6 and osteocyte cell line IDG-SW3 by quantitative real-time polymerase chain reaction, Western blot, confocal microscopy, alkaline phosphatase (ALP) assay, and Alizarin red S staining. In vivo, histological changes of cementum and bone formation were examined in transgenic mice in which constitutive activation of ß-catenin is driven by Dmp1 promoter. RESULTS: Expression of components of the Wnt/ß-catenin pathway were much greater in the IDG-SW3 cells compared with the IDG-CM6 cells resulting in much lower expression of Sost/sclerostin in the IDG-SW3 cells. In the IDG-CM6 cells, low dose Wnt3a (20 ng/ml) had a modest effect while high dose (200 ng/ml) inhibited runt-related transcription factor 2, osterix, ALP, and osteopontin in contrast to the IDG-SW3 cells where high dose Wnt3a dramatically increased mRNA expression of these same markers. However, high Wnt3a significantly increased mRNA for components of Wnt/ß-catenin signaling pathway in both IDG-CM6 and IDG-SW3 cells. In vivo, constitutive activation of ß-catenin in the Dmp1-lineage cells in mice leads to bone hyperplasia and cementum hypoplasia. CONCLUSION: These findings indicate that Wnt signaling has distinct and different effects on the regulation of long bone as compared with cementum.


Cementogenesis , Wnt Signaling Pathway , Mice , Animals , Osteogenesis , beta Catenin/genetics , beta Catenin/metabolism , beta Catenin/pharmacology , Cell Differentiation , Alkaline Phosphatase/metabolism , RNA, Messenger
12.
Clin Oral Investig ; 26(1): 1003-1016, 2022 Jan.
Article En | MEDLINE | ID: mdl-34363103

OBJECTIVES: The aim of this study was to investigate cementocyte mechanotransduction during excessive orthodontic intrusive force-induced root resorption and the role of S1P signaling in this process. MATERIALS AND METHODS: Fifty-four 12-week-old male Wistar rats were randomly divided into 3 groups: control group (Control), intrusive stress application group (Stress), and intrusive stress together with S1PR2-specific antagonist injection group (Stress + JTE). A rat molar intrusion model was established on animals in the Stress and the Stress + JTE groups. The animals in the Stress + JTE group received daily intraperitoneal (i.p.) injection of S1PR2 antagonist JTE-013, while the Control and Stress groups received only the vehicle. Histomorphometric, immunohistochemical, quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot analyses were performed after euthanizing of the rats. RESULTS: Root resorption was promoted in the Stress group with increased volumes of resorption pits and amounts of molar intrusion compared with the Control group. The expression levels of cementogenic- and cementoclastic-related factors were affected under excessive intrusive force. Immunohistochemical staining and qRT-PCR analysis showed promoted S1P signaling activities during molar intrusion. Western blot analysis indicated decreased nuclear translocation of ß-catenin under excessive intrusive force. Through the administration of JTE-013, S1P signaling activity was suppressed and excessive intrusive force-induced root resorption was reversed. The regulation of S1P signaling could also influence the nuclear translocation of ß-catenin and the expressions of cementogenic- and cementoclastic-related factors. CONCLUSIONS: Root resorption was promoted under excessive orthodontic intrusive force due to the disruption of cementum homeostasis. S1P signaling pathway might play an important role in cementocyte mechanotransduction in this process. CLINICAL RELEVANCE: The S1P signaling might be a promising therapeutic target for novel therapeutic approaches to prevent external root resorption caused by excessive orthodontic intrusive force.


Root Resorption , Animals , Lysophospholipids , Male , Mechanotransduction, Cellular , Molar , Rats , Rats, Wistar , Signal Transduction , Sphingosine/analogs & derivatives , Tooth Movement Techniques
13.
Front Psychol ; 13: 1093362, 2022.
Article En | MEDLINE | ID: mdl-36687862

Enterprises need intellectual property rights to protect their core knowledge, and technological diversification is an important strategic measure for enterprises to improve innovation performance. From the perspective of external resource acquisition, this study explores the mechanism of external knowledge acquisition capability (internal absorptive capability and external relational learning) on firm's technological diversification. It considers the impact of firm's innovation capability and external environmental uncertainty. The survey data of 258 Chinese pharmaceutical companies were obtained through questionnaire surveys, and various theoretical hypotheses were validated using regression analysis methods. The results show that internal absorptive capacity, external relational learning, and their interaction have a significant positive impact on technological diversification; the innovation capacity and the uncertainty of the external environment also affect enterprises' technological diversification.

14.
Front Physiol ; 12: 767136, 2021.
Article En | MEDLINE | ID: mdl-34880779

Orthodontic tooth movement (OTM) is a process depending on the remodeling of periodontal tissues surrounding the roots. Orthodontic forces trigger the conversion of mechanical stimuli into intercellular chemical signals within periodontal ligament (PDL) cells, activating alveolar bone remodeling, and thereby, initiating OTM. Recently, the mechanosensitive ion channel Piezo1 has been found to play pivotal roles in the different types of human cells by transforming external physical stimuli into intercellular chemical signals. However, the function of Piezo1 during the mechanotransduction process of PDL cells has rarely been reported. Herein, we established a rat OTM model to study the potential role of Piezo1 during the mechanotransduction process of PDL cells and investigate its effects on the tension side of alveolar bone remodeling. A total of 60 male Sprague-Dawley rats were randomly assigned into three groups: the OTM + inhibitor (INH) group, the OTM group, and the control (CON) group. Nickel-titanium orthodontic springs were applied to trigger tooth movement. Mice were sacrificed on days 0, 3, 7, and 14 after orthodontic movement for the radiographic, histological, immunohistochemical, and molecular biological analyses. Our results revealed that the Piezo1 channel was activated by orthodontic force and mainly expressed in the PDL cells during the whole tooth movement period. The activation of the Piezo1 channel was essential for maintaining the rate of orthodontic tooth movement and facilitation of new alveolar bone formation on the tension side. Reduced osteogenesis-associated transcription factors such as Runt-related transcription factor 2 (RUNX2), Osterix (OSX), and receptor activator of nuclear factor-kappa B ligand (RANKL)/osteoprotegerin (OPG) ratio were examined when the function of Piezo1 was inhibited. In summary, Piezo1 plays a critical role in mediating both the osteogenesis and osteoclastic activities on the tension side during OTM.

15.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 52(6): 929-935, 2021 Nov.
Article Zh | MEDLINE | ID: mdl-34841756

As a self-protective mechanism for cells to obtain energy by degrading their own structures or substances, autophagy widely occurs in basic physiological process of all kinds of eukaryotic cells. In recent years, studies have shown that autophagy can be induced through a variety of mechanical transduction pathways when various tissues and cells are exposed to different types of mechanical stress, and cells and tissues involved can thus regulate cell metabolic functions and participate in the pathological process of a variety of diseases. The stress receptors on the cell membrane and the multiple signaling pathways and cytoskeletons have been shown to play an important role in this process. At present, due to the difficulties in the establishment of the stress loading model and the limitations in the research methods concerned, the specific mechanical transduction mechanisms of autophagy induced by mechanical stress is not clear. Therefore, more reliable in vitro and in vivo models and more advanced research methodology are needed to investigate the mechanical transduction process of autophagy induced by mechanical stress, and to promote ultimately progress in the understanding of autophagy-related diseases and their treatments. This article reviewed the regulatory role of mechanical stress on autophagy in physiological and disease processes and the signal transduction process related to autophagy induced by mechanical stress.


Autophagy , Mechanotransduction, Cellular , Signal Transduction , Stress, Mechanical
16.
Article En | MEDLINE | ID: mdl-34682437

Construction safety standards (CSS) have knowledge characteristics, but few studies have introduced knowledge graphs (KG) as a tool into CSS management. In order to improve CSS knowledge management, this paper first analyzed the knowledge structure of 218 standards and obtained three knowledge levels of CSS. Second, a concept layer was designed which consisted of five levels of concepts and eight types of relationships. Third, an entity layer containing 147 entities was constructed via entity identification, attribute extraction and entity extraction. Finally, 177 nodes and 11 types of attributes were collected and the construction of a knowledge graph of construction safety standard (KGCSS) was completed using knowledge storage. Furthermore, we implemented knowledge inference and obtained CSS planning, i.e., the list of standard work plans used to guide the development and revision of CSS. In addition, we conducted CSS knowledge retrieval; a process which supports interrogative input. The construction of KGCSS thus facilitates the analysis, querying, and sharing of safety standards knowledge.


Knowledge Management , Pattern Recognition, Automated , China , Knowledge , Safety Management
17.
Mar Pollut Bull ; 160: 111668, 2020 Nov.
Article En | MEDLINE | ID: mdl-32927184

A series of flow-through reactor experiments were undertaken to assess the potential effect of porewater advection and dissolved inorganic phosphorus (DIP) concentration on benthic DIP dynamics in permeable sediments collected from the Weizhou Island, northern South China Sea. The flux of DIP ranged from -0.13 to 0.05 mmol m-2 h-1, and the reversal from DIP efflux to influx occurred when the DIP concentration reached a threshold. DIP release from the sediment into the seawater peaked at intermediate advection rate, which perhaps provide optimum conditions for DIP release related to CaCO3 dissolution. Phosphorus limitation in seawater could be relieved by DIP release from the sediment, and CaCO3-bound P in carbonate sands may play a major role in benthic DIP release and decrease in the molar nitrogen/phosphorus ratio in seawater around the Weizhou Island.


Phosphorus , Sand , Carbonates , China , Geologic Sediments , Islands , Phosphorus/analysis
18.
Cell Death Dis ; 8(2): e2577, 2017 02 02.
Article En | MEDLINE | ID: mdl-28151484

Pretreatment of berbamine protects the heart from ischemia/reperfusion (I/R) injury. However it is unknown whether it has cardioprotection when given at the onset of reperfusion (postconditioning (PoC)), a protocol with more clinical impact. Autophagy is upregulated in I/R myocardium and exacerbates cardiomyocyte death during reperfusion. However, it is unknown whether the autophagy during reperfusion is regulated by berbamine. Here we investigated whether berbamine PoC (BMPoC) protects the heart through regulation of autophagy by analyzing the effects of BMPoC on infarct size and/or cell death, functional recovery and autophagy in perfused rat hearts and isolated cardiomyocytes subjected to I/R. Berbamine from 10 to 100 nM given during the first 5 min of reperfusion concentration-dependently improved post-ischemic myocardial function and attenuated cell death. Similar protections were observed in cardiomyocytes subjected to simulated I/R. Meanwhile, BMPoC prevented I/R-induced impairment of autophagosome processing in cardiomyocytes, characterized by increased LC3-II level and GFP-LC3 puncta, and decreased p62 degradation. Besides, lysosomal inhibitor chloroquine did not induce additional increase of LC3-II and P62 abundance after I/R but it reversed the effects of BMPoC in those parameters in cardiomyocytes, suggesting that I/R-impaired autophagic flux is restored by BMPoC. Moreover, I/R injury was accompanied by enhanced expression of Beclin 1, which was significantly inhibited by BMPoC. In vitro and in vivo adenovirus-mediated knockdown of Beclin 1 in myocardium and cardiomyocytes restored I/R-impaired autophagosome processing, associated with an improvement of post-ischemic recovery of myocardial contractile function and a reduction of cell death, but it did not have additive effects to BMPoC. Conversely, overexpression of Beclin 1 abolished the cardioprotection of BMPoC as did by overexpression of an essential autophagy gene Atg5. Furthermore, BMPoC-mediated cardioprotection was abolished by a specific Akt1/2 inhibitor A6730. Our results demonstrate that BMPoC confers cardioprotection by modulating autophagy during reperfusion through the activation of PI3K/Akt signaling pathway.


Autophagy/drug effects , Benzylisoquinolines/pharmacology , Myocardial Reperfusion Injury/drug therapy , Myocytes, Cardiac/drug effects , Animals , Apoptosis Regulatory Proteins/metabolism , Beclin-1/metabolism , Cardiotonic Agents/pharmacology , Male , Microtubule-Associated Proteins/metabolism , Myocardial Reperfusion Injury/metabolism , Myocardium/metabolism , Myocytes, Cardiac/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Rats , Rats, Sprague-Dawley , Signal Transduction/drug effects
19.
Am J Physiol Heart Circ Physiol ; 306(11): H1569-81, 2014 Jun 01.
Article En | MEDLINE | ID: mdl-24705558

Inhibition of matrix metalloproteinases-2 (MMP-2) activation renders cardioprotection from ischemia/reperfusion (I/R) injury; however, the signaling pathways involved have not been fully understood. Intermittent hypobaric hypoxia (IHH) has been shown to enhance myocardial tolerance to I/R injury via triggering intrinsic adaptive responses. Here we investigated whether IHH protects the heart against I/R injury via the regulation of MMP-2 and how the MMP-2 is regulated. IHH (Po2 = 84 mmHg, 4-h/day, 4 wk) improved postischemic myocardial contractile performance, lactate dehydrogenase (LDH) release, and infarct size in isolated perfused rat hearts. Moreover, IHH reversed I/R-induced MMP-2 activation and release, disorders in the levels of MMP-2 regulators, peroxynitrite (ONOO(-)) and tissue inhibitor of metalloproteinase-4 (TIMP-4), and loss of the MMP-2 targets α-actinin and troponin I. This protection was mimicked, but not augmented, by a MMP inhibitor doxycycline and lost by the α1-adrenoceptor (AR) antagonist prazosin. Furthermore, IHH increased myocardial α1A-AR and α1B-AR density but not α1D-AR after I/R. Concomitantly, IHH further enhanced the translocation of PKC epsilon (PKCε) and decreased the release of mitochondrial cytochrome c due to I/R via the activation of α1B-AR but not α1A-AR or α1D-AR. IHH-conferred cardioprotection in the postischemic contractile function, LDH release, MMP-2 activation, and nitrotyrosine as well as TIMP-4 contents were mimicked but not additive by α1-AR stimulation with phenylephrine and were abolished by an α1B-AR antagonist chloroethylclonidine and a PKCε inhibitor PKCε V1-2. These findings demonstrate that IHH exerts cardioprotection through attenuating excess ONOO(-) biosynthesis and TIMP-4 loss and sequential MMP-2 activation via the activation of α1B-AR/PKCε pathway.


Hypoxia/metabolism , Matrix Metalloproteinase 2/metabolism , Myocardial Ischemia/metabolism , Myocardium/metabolism , Receptors, Adrenergic, alpha-1/metabolism , Reperfusion Injury/metabolism , Actinin/metabolism , Adrenergic alpha-1 Receptor Antagonists/pharmacology , Animals , Doxycycline/pharmacology , Male , Prazosin/pharmacology , Protein Kinase C-epsilon/metabolism , Rats , Rats, Sprague-Dawley , Signal Transduction/drug effects , Tissue Inhibitor of Metalloproteinases/metabolism , Tissue Inhibitor of Metalloproteinase-4
20.
Article En | MEDLINE | ID: mdl-21515400

A cationic trypsin (trypsin A) and an anionic trypsin (trypsin B) were highly purified from the hepatopancreas of the Japanese sea bass (Lateolabrax japonicus) by ammonium sulfate precipitation, column chromatographies of DEAE-Sepharose and Sephacryl S-200 HR. Purified trypsins revealed single band on SDS-PAGE and their molecular masses were 21 kDa and 21.5 kDa, respectively. Trypsins A and B exhibited maximal activity at 40°C, and shared the same optimal pH at 9.0 using Boc-Phe-Ser-Arg-MCA as the substrate. The two trypsins were stable up to 45°C and in the pH range from 7.0 to 11.0. Trypsin inhibitors such as Pefabloc SC, PMSF and benzamidine are effective to these two enzymes and their susceptibilities were similar. Apparent K(m)s of trypsins A and B were 1.12 and 0.7 µM and k(cat)s of them were 72.08 and 67.79 S(-1) for Boc-Phe-Ser-Arg-MCA, respectively. The N-terminal amino acid sequences of the two trypsins were determined to the 24th residues, which were highly identical to trypsins from other species of fish while trypsins A and B only shared 45.8% identity. The digestive effect of the two trypsins on native shrimp muscular proteins indicated their effectiveness in the degradation of food proteins.


Bass/metabolism , Hepatopancreas/enzymology , Trypsin/metabolism , Amino Acid Sequence , Animals , Blotting, Western , Electrophoresis, Polyacrylamide Gel , Hydrogen-Ion Concentration , Kinetics , Molecular Sequence Data , Sequence Alignment , Substrate Specificity , Trypsin/chemistry , Trypsin Inhibitors/pharmacology
...