Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 55
1.
Nat Commun ; 15(1): 5247, 2024 Jun 19.
Article En | MEDLINE | ID: mdl-38898078

DNA replication in differentiated cells follows a defined program, but when and how it is established during mammalian development is not known. Here we show using single-cell sequencing, that late replicating regions are established in association with the B compartment and the nuclear lamina from the first cell cycle after fertilization on both maternal and paternal genomes. Late replicating regions contain a relative paucity of active origins and few but long genes and low G/C content. In both bovine and mouse embryos, replication timing patterns are established prior to embryonic genome activation. Chromosome breaks, which form spontaneously in bovine embryos at sites concordant with human embryos, preferentially locate to late replicating regions. In mice, late replicating regions show enhanced fragility due to a sparsity of dormant origins that can be activated under conditions of replication stress. This pattern predisposes regions with long neuronal genes to fragility and genetic change prior to separation of soma and germ cell lineages. Our studies show that the segregation of early and late replicating regions is among the first layers of genome organization established after fertilization.


DNA Replication , Embryo, Mammalian , Nuclear Lamina , Animals , Mice , Embryo, Mammalian/metabolism , Cattle , Nuclear Lamina/metabolism , Female , Male , Humans , Embryonic Development/genetics , Genome , Single-Cell Analysis
2.
Cells ; 13(10)2024 May 16.
Article En | MEDLINE | ID: mdl-38786074

Mammalian oocyte development depends on the temporally controlled translation of maternal transcripts, particularly in the coordination of meiotic and early embryonic development when transcription has ceased. The translation of mRNA is regulated by various RNA-binding proteins. We show that the absence of cytoplasmic polyadenylation element-binding protein 3 (CPEB3) negatively affects female reproductive fitness. CPEB3-depleted oocytes undergo meiosis normally but experience early embryonic arrest due to a disrupted transcriptome, leading to aberrant protein expression and the subsequent failure of embryonic transcription initiation. We found that CPEB3 stabilizes a subset of mRNAs with a significantly longer 3'UTR that is enriched in its distal region with cytoplasmic polyadenylation elements. Overall, our results suggest that CPEB3 is an important maternal factor that regulates the stability and translation of a subclass of mRNAs that are essential for the initiation of embryonic transcription and thus for embryonic development.


Oocytes , RNA-Binding Proteins , Oocytes/metabolism , Animals , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Female , Mice , Meiosis/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Embryonic Development/genetics , Gene Expression Regulation, Developmental , 3' Untranslated Regions/genetics , Polyadenylation , RNA Stability/genetics
3.
iScience ; 27(4): 109605, 2024 Apr 19.
Article En | MEDLINE | ID: mdl-38633001

Supporting healthy pregnancy outcomes requires a comprehensive understanding of the molecular and cellular programs of peri-implantation development, when most pregnancy failure occurs. Here, we present single-cell transcriptomes of bovine peri-implantation embryo development at day 12, 14, 16, and 18 post-fertilization. We defined the cellular composition and gene expression of embryonic disc, hypoblast, and trophoblast lineages in bovine peri-implantation embryos, and identified markers and pathway signaling that represent distinct stages of bovine peri-implantation lineages; the expression of selected markers was validated in peri-implantation embryos. Using detailed time-course transcriptomic analyses, we revealed a previously unrecognized primitive trophoblast cell lineage. We also characterized conserved and divergence peri-implantation lineage programs between bovine and other mammalian species. Finally, we established cell-cell communication signaling underlies embryonic and extraembryonic cell interaction to ensure proper early development. These data provide foundational information to discover essential biological signaling underpinning bovine peri-implantation development.

4.
Clin Transl Oncol ; 2024 Mar 15.
Article En | MEDLINE | ID: mdl-38491294

Thyroid hormone has been shown to have both tumor-promoting and tumor-suppressing actions, which has led to significant debate over its involvement in the development of cancer. Proliferation, apoptosis, invasiveness, and angiogenesis are all aspects of cancer that are affected by the thyroid hormones T3 and T4, according to research conducted in animal models and in vitro experiments. The effects of thyroid hormones on cancer cells are mediated by many non-genomic mechanisms, one of which involves the activation of the plasma membrane receptor integrin αvß3. Typically, abnormal amounts of thyroid hormones are linked to a higher occurrence of cancer. Both benign and malignant thyroid disorders were found to be associated with an increased risk of extra-thyroidal malignancies, specifically colon, breast, prostate, melanoma, and lung cancers. The purpose of this review was to shed light on this link to define which types of cancer are sensitive to thyroid hormones and, as a result, are anticipated to respond favorably to treatment of the thyroid hormone axis.

5.
Biol Reprod ; 2024 Feb 26.
Article En | MEDLINE | ID: mdl-38408205

Profiling bovine blastocyst transcriptome at the single-cell level has enabled us to reveal the first cell lineage segregation, during which the inner cell mass (ICM), trophectoderm (TE), and an undefined population of transitional cells were identified. By comparing the transcriptome of blastocysts derived in vivo (IVV), in vitro from a conventional culture medium (IVC), and in vitro from an optimized reduced nutrient culture medium (IVR), we found a delay of the cell fate commitment to ICM in the IVC and IVR embryos. Developmental potential differences between IVV, IVC, and IVR embryos were mainly contributed by ICM and transitional cells. Pathway analysis of these non-TE cells between groups revealed highly active metabolic and biosynthetic processes, reduced cellular signaling, and reduced transmembrane transport activities in IVC embryos that may lead to reduced developmental potential. IVR embryos had lower activities in metabolic and biosynthetic processes but increased cellular signaling and transmembrane transport, suggesting these cellular mechanisms may contribute to improved blastocyst development compared to IVC embryos. However, the IVR embryos had compromised development compared to IVV embryos with notably over-active transmembrane transport activities that impaired ion homeostasis.

6.
J Immunol ; 212(2): 346-354, 2024 Jan 15.
Article En | MEDLINE | ID: mdl-38054905

TNF-α and IFN-γ are two inflammatory cytokines that play critical roles in immune responses, but they can also negatively affect cell proliferation and viability. In particular, the combination of the two cytokines (TNF-α/IFN-γ) synergistically causes cytotoxicity in many cell types. We recently reported that mouse embryonic stem cells (ESCs) isolated from the blastocyst stage embryo do not respond to TNF-α and have limited response to IFN-γ, thereby avoiding TNF-α/IFN-γ cytotoxicity. The current study expanded our investigation to mouse trophoblast stem cells (TSCs) and their differentiated trophoblasts (TSC-TBs), the precursors and the differentiated cells of the placenta, respectively. In this study, we report that the combination of TNF-α/IFN-γ does not show the cytotoxicity to TSCs and TSC-TBs that otherwise effectively kills fibroblasts, similar to ESCs. Although ESCs, TSCs, and TSC-TBs are dramatically different in their growth rate, morphology, and physiological functions, they nevertheless share a similarity in being able to avoid TNF-α/IFN-γ cytotoxicity. We propose that this unique immune property may serve as a protective mechanism that limits cytokine cytotoxicity in the blastocyst. With molecular and cellular approaches and genome-wide transcriptomic analysis, we have demonstrated that the attenuated NF-κB and STAT1 transcription activation is a limiting factor that restricts the effect of TNF-α/IFN-γ on TSCs and TSC-TBs.


Cytokines , Tumor Necrosis Factor-alpha , Animals , Female , Mice , Pregnancy , Cytokines/metabolism , Interferon-gamma , NF-kappa B/metabolism , Trophoblasts/physiology , Tumor Necrosis Factor-alpha/metabolism
7.
Reprod Fertil Dev ; 36(2): 34-42, 2023 Dec.
Article En | MEDLINE | ID: mdl-38064195

Early embryonic mortality is a major cause of infertility in cattle, yet the underlying molecular causes remain a mystery. Over the past half century, assisted reproductive technologies such as in vitro fertilisation and somatic cell nuclear transfer have been used to improve cattle reproductive efficiency; however, reduced embryo developmental potential is seen compared to their in vivo counterparts. Recent years have seen exciting progress across bovine embryo research, including genomic profiling of embryogenesis, new methods for improving embryo competence, and experimenting on building bovine embryos from stem cell cultures. These advances are beginning to define bovine embryo molecular and cellular programs and could potentially lead to improved embryo health. Here, I highlight the current status of molecular determinants and cellular programs of bovine embryo development and new opportunities to improve the bovine embryo health.


Embryonic Development , Fertilization in Vitro , Cattle , Animals , Embryonic Development/genetics , Fertilization in Vitro/veterinary , Reproduction , Embryo, Mammalian , Reproductive Techniques, Assisted , Blastocyst
8.
Nucleic Acids Res ; 51(22): 12076-12091, 2023 Dec 11.
Article En | MEDLINE | ID: mdl-37950888

Translation is critical for development as transcription in the oocyte and early embryo is silenced. To illustrate the translational changes during meiosis and consecutive two mitoses of the oocyte and early embryo, we performed a genome-wide translatome analysis. Acquired data showed significant and uniform activation of key translational initiation and elongation axes specific to M-phases. Although global protein synthesis decreases in M-phases, translation initiation and elongation activity increases in a uniformly fluctuating manner, leading to qualitative changes in translation regulation via the mTOR1/4F/eEF2 axis. Overall, we have uncovered a highly dynamic and oscillatory pattern of translational reprogramming that contributes to the translational regulation of specific mRNAs with different modes of polysomal occupancy/translation that are important for oocyte and embryo developmental competence. Our results provide new insights into the regulation of gene expression during oocyte meiosis as well as the first two embryonic mitoses and show how temporal translation can be optimized. This study is the first step towards a comprehensive analysis of the molecular mechanisms that not only control translation during early development, but also regulate translation-related networks employed in the oocyte-to-embryo transition and embryonic genome activation.


Embryonic Development , Oocytes , Protein Biosynthesis , Gene Expression Regulation, Developmental , Meiosis , Oocytes/cytology , Oocytes/growth & development , Oocytes/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Animals , Mice
9.
Physiol Genomics ; 55(11): 557-564, 2023 Nov 01.
Article En | MEDLINE | ID: mdl-37720990

The objectives of the present study were to characterize the expression of genes encoding for cell signaling ligands in the bovine endosalpinx and endometrium and analyze spatial changes in gene expression. RNA sequencing was performed for the endosalpinx from the ampulla of the oviduct and endometrium from the upper and middle uterine horn and uterine body at day 2 after ovulation from ipsilateral and contralateral sides relative to the ovulatory ovary. Of the 17,827 unique mRNA transcripts mapped, 2,072 were affected by cranial-caudal position in the reproductive tract and 818 were affected by side (false discovery rate < 0.05). There were 334 genes encoding for cell signaling ligands, with 128 genes having greater than two transcripts per million on average. A total of 81 cell signaling ligand genes were affected by position and 24 were affected by side. A data set of the transcriptome of two to four cell embryos was used to identify cell signaling ligand genes that were highly expressed in the ampulla for which there was high expression of the receptor in the embryo. The most expressed ligand-receptor pairs were PSAP/SORT1, MIF/CXCR4, GPI/AMFR, and KITLG/KIT. These cell signaling ligands, as well as others whose gene is expressed in the endosalpinx and endometrium, may influence early embryonic development. Spatial changes throughout the reproductive tract highlight the distinctive expression profile of the oviduct versus the endometrium, including a set of the identified genes encoding for cell signaling ligands, and highlight the local influence of the ovary. The results also show the continuity of expression for large numbers of genes in the reproductive tract.NEW & NOTEWORTHY Examination of the transcriptome of the endosalpinx and endometrium revealed the degree to which gene expression in the reproductive tract varies spatially. The expression of genes encoding cell signaling molecules that could potentially regulate embryonic development was also identified.


Endometrium , Transcriptome , Pregnancy , Female , Cattle , Animals , Transcriptome/genetics , Ligands , Endometrium/metabolism , Gene Expression Profiling , Uterus/metabolism
10.
Reproduction ; 166(5): 311-322, 2023 11 01.
Article En | MEDLINE | ID: mdl-37647207

In brief: Inadequate maternal nutrition during gestation can have immediate and lifelong effects on offspring. This study shows that maternal restricted - and over- nutrition during gestation do not affect semen characteristics in F1 male offspring but alters offspring sperm sncRNA profiles and DNA methylome in sheep. Abstract: There is a growing body of evidence that inadequate maternal nutrition during gestation can have immediate and lifelong effects on offspring. However, little is known about the effects of maternal nutrition during gestation on male offspring reproduction. Here, using a sheep model of maternal restricted - and over - nutrition (60 or 140% of the National Research Council requirements) during gestation, we found that maternal restricted - and over - nutrition do not affect semen characteristics (i.e. volume, sperm concentration, pH, sperm motility, sperm morphology) or scrotal circumference in male F1 offspring. However, using small RNA sequencing analysis, we demonstrated that both restricted - and over - nutrition during gestation induced marked changes in composition and expression of sperm small noncoding RNAs (sncRNAs) subpopulations including in male F1 offspring. Whole-genome bisulfite sequencing analysis further identified specific genomic loci where poor maternal nutrition resulted in alterations in DNA methylation. These findings indicate that maternal restricted - and over - nutrition during gestation induce epigenetic modifications in sperm of F1 offspring sperm in sheep, which may contribute to environmentally influenced phenotypes in ruminants.


Epigenome , Malnutrition , Female , Pregnancy , Animals , Male , Sheep , Semen , Sperm Motility , Reproduction , Spermatozoa/metabolism , Malnutrition/metabolism
11.
bioRxiv ; 2023 Jun 14.
Article En | MEDLINE | ID: mdl-37398069

Supporting healthy pregnancy outcomes requires a comprehensive understanding of the cellular hierarchy and underlying molecular mechanisms during peri-implantation development. Here, we present a single-cell transcriptome-wide view of the bovine peri-implantation embryo development at day 12, 14, 16 and 18, when most of the pregnancy failure occurs in cattle. We defined the development and dynamic progression of cellular composition and gene expression of embryonic disc, hypoblast, and trophoblast lineages during bovine peri-implantation development. Notably, the comprehensive transcriptomic mapping of trophoblast development revealed a previously unrecognized primitive trophoblast cell lineage that is responsible for pregnancy maintenance in bovine prior to the time when binucleate cells emerge. We analyzed novel markers for the cell lineage development during bovine early development. We also identified cell-cell communication signaling underling embryonic and extraembryonic cell interaction to ensure proper early development. Collectively, our work provides foundational information to discover essential biological pathways underpinning bovine peri-implantation development and the molecular causes of the early pregnancy failure during this critical period. Significance Statement: Peri-implantation development is essential for successful reproduction in mammalian species, and cattle have a unique process of elongation that proceeds for two weeks prior to implantation and represents a period when many pregnancies fail. Although the bovine embryo elongation has been studied histologically, the essential cellular and molecular factors governing lineage differentiation remain unexplored. This study profiled the transcriptome of single cells in the bovine peri-implantation development throughout day 12, 14, 16, and 18, and identified peri-implantation stage-related features of cell lineages. The candidate regulatory genes, factors, pathways and embryonic and extraembryonic cell interactions were also prioritized to ensure proper embryo elongation in cattle.

12.
bioRxiv ; 2023 Jun 11.
Article En | MEDLINE | ID: mdl-37333292

Profiling transcriptome at single cell level of bovine blastocysts derived in vivo (IVV), in vitro from conventional culture medium (IVC), and reduced nutrient culture medium (IVR) has enabled us to reveal cell lineage segregation, during which forming inner cell mass (ICM), trophectoderm (TE), and an undefined population of transitional cells. Only IVV embryos had well-defined ICM, indicating in vitro culture may delay the first cell fate commitment to ICM. Differences between IVV, IVC and IVR embryos were mainly contributed by ICM and transitional cells. Pathway analysis by using the differentially expressed genes of these non-TE cells between groups pointed to highly active metabolic and biosynthetic processes, with reduced cellular signaling and membrane transport in IVC embryos, which may lead to reduced developmental potential. IVR embryos had lower activities in metabolic and biosynthetic processes, but increased cellular signaling and membrane transport, suggesting these cellular mechanisms may contribute to the improved blastocyst development compared to IVC embryos. However, the IVR embryos had compromised development when compared to IVV embryos with notably over-active membrane transport activities that led to impaired ion homeostasis.

13.
Reproduction ; 166(3): 199-207, 2023 09 01.
Article En | MEDLINE | ID: mdl-37387479

In brief: It is not known when a functional circadian clock is established in the developing embryo. Lack of expression of key genes involved in the clock mechanism is indicative that a functional circadian clock mechanism is absent in the mammalian preimplantation embryo through the blastocyst stage of development. Abstract: An embryonic circadian clock could conceivably organize cellular and developmental events temporally and in synchrony with other circadian rhythms in the mother. The hypothesis that a functional molecular clock exists in the preimplantation bovine, pig, human, and mouse embryo was tested by using publicly available RNAseq datasets to examine developmental changes in expression of the core genes responsible for the circadian clock - CLOCK, ARNTL, PER1, PER2, CRY1, and CRY2. In general, the transcript abundance of each gene decreased as development advanced to the blastocyst stage. The most notable exception was for CRY2, where transcript abundance was low and constant from the two-cell or four-cell to the blastocyst stage. Developmental patterns were generally the same for all species although there were some species-specific patterns such as an absence of PER1 expression in the pig, an increase in ARNTL expression at the four-cell stage in human, and an increase in expression of Clock and Per1 from the zygote to two-cell stage in the mouse. Analysis of intronic reads (indicative of embryonic transcription) for bovine embryos indicated an absence of embryonic transcription. Immunoreactive CRY1 was not detected in the bovine blastocyst. Results indicate that the preimplantation mammalian embryo lacks a functional intrinsic clock although specific components of the clock mechanism could conceivably play a role in other functions in the embryo.


ARNTL Transcription Factors , Circadian Clocks , Cattle , Mice , Animals , Humans , Swine , Circadian Clocks/genetics , Cryptochromes/genetics , Cryptochromes/metabolism , Blastocyst/metabolism , Mammals
14.
Cell Stem Cell ; 30(5): 611-616.e7, 2023 05 04.
Article En | MEDLINE | ID: mdl-37146582

Understanding the mechanisms of blastocyst formation and implantation is critical for improving farm animal reproduction but is hampered by a limited supply of embryos. Here, we developed an efficient method to generate bovine blastocyst-like structures (termed blastoids) via assembling bovine trophoblast stem cells and expanded potential stem cells. Bovine blastoids resemble blastocysts in morphology, cell composition, single-cell transcriptomes, in vitro growth, and the ability to elicit maternal recognition of pregnancy following transfer to recipient cows. Bovine blastoids represent an accessible in vitro model for studying embryogenesis and improving reproductive efficiency in livestock species.


Blastocyst , Trophoblasts , Pregnancy , Female , Cattle , Animals , Embryo Implantation , Embryonic Development , Stem Cells , Cell Culture Techniques
15.
Cell Rep ; 42(5): 112439, 2023 05 30.
Article En | MEDLINE | ID: mdl-37146606

Here, we report that a chemical cocktail (LCDM: leukemia inhibitory factor [LIF], CHIR99021, dimethinedene maleate [DiM], minocycline hydrochloride), previously developed for extended pluripotent stem cells (EPSCs) in mice and humans, enables de novo derivation and long-term culture of bovine trophoblast stem cells (TSCs). Bovine TSCs retain developmental potency to differentiate into mature trophoblast cells and exhibit transcriptomic and epigenetic (chromatin accessibility and DNA methylome) features characteristic of trophectoderm cells from early bovine embryos. The bovine TSCs established in this study will provide a model to study bovine placentation and early pregnancy failure.


Pluripotent Stem Cells , Trophoblasts , Pregnancy , Humans , Female , Animals , Cattle , Mice , Cell Differentiation/genetics , Placentation
16.
Development ; 149(21)2022 11 01.
Article En | MEDLINE | ID: mdl-36227586

High-resolution ribosome fractionation and low-input ribosome profiling of bovine oocytes and preimplantation embryos has enabled us to define the translational landscapes of early embryo development at an unprecedented level. We analyzed the transcriptome and the polysome- and non-polysome-bound RNA profiles of bovine oocytes (germinal vesicle and metaphase II stages) and early embryos at the two-cell, eight-cell, morula and blastocyst stages, and revealed four modes of translational selectivity: (1) selective translation of non-abundant mRNAs; (2) active, but modest translation of a selection of highly expressed mRNAs; (3) translationally suppressed abundant to moderately abundant mRNAs; and (4) mRNAs associated specifically with monosomes. A strong translational selection of low-abundance transcripts involved in metabolic pathways and lysosomes was found throughout bovine embryonic development. Notably, genes involved in mitochondrial function were prioritized for translation. We found that translation largely reflected transcription in oocytes and two-cell embryos, but observed a marked shift in the translational control in eight-cell embryos that was associated with the main phase of embryonic genome activation. Subsequently, transcription and translation become more synchronized in morulae and blastocysts. Taken together, these data reveal a unique spatiotemporal translational regulation that accompanies bovine preimplantation development.


Blastocyst , Embryonic Development , Pregnancy , Female , Cattle , Animals , Embryonic Development/genetics , Morula/metabolism , Blastocyst/metabolism , Oocytes/metabolism , Ribosomes/genetics , Gene Expression Regulation, Developmental
17.
Healthcare (Basel) ; 10(9)2022 Aug 30.
Article En | MEDLINE | ID: mdl-36141269

Self-management interventions (SMIs) may fail if they misalign with the local context. To optimize the implementation of SMIs in Chinese people with chronic lung disease (CLD), the local context was identified in Chinese primary care (PC) and secondary care (SC). A mixed-method study using semi-structured interviews and quantitative surveys was conducted on people with CLD and healthcare professionals (HCPs). The qualitative data was collected until data saturation was reached, and participants were invited to complete the survey after the interview. The qualitative data-analyzed with the framework approach-was triangulated with the quantitative data. A total of 52 participants completed the interviews, and 48 also finished the survey. Four themes were identified; (a) illness perceptions (e.g., patients had poor CLD knowledge and SM, inadequate resources lead to suboptimal disease control in PC); (b) self-management skills (e.g., most patients delayed exacerbation recognition and action, and some were admitted at the crisis point); (c) factors influencing self-management skills (e.g., (in)adequate disease knowledge and medical expenditure affordability); and (d) needs for self-management (e.g., increased disease knowledge, individualized self-management plan, eHealth, (healthcare insurance) policy support). Identified themes were dependent on each other and should be leveraged when implementing SMIs. Ultimately, such SMIs can optimize patient health outcomes.

18.
Front Genet ; 13: 910439, 2022.
Article En | MEDLINE | ID: mdl-35938031

The high level of sparsity in methylome profiles obtained using whole-genome bisulfite sequencing in the case of low biological material amount limits its value in the study of systems in which large samples are difficult to assemble, such as mammalian preimplantation embryonic development. The recently developed computational methods for addressing the sparsity by imputing missing have their limits when the required minimum data coverage or profiles of the same tissue in other modalities are not available. In this study, we explored the use of transfer learning together with Kullback-Leibler (KL) divergence to train predictive models for completing methylome profiles with very low coverage (below 2%). Transfer learning was used to leverage less sparse profiles that are typically available for different tissues for the same species, while KL divergence was employed to maximize the usage of information carried in the input data. A deep neural network was adopted to extract both DNA sequence and local methylation patterns for imputation. Our study of training models for completing methylome profiles of bovine oocytes and early embryos demonstrates the effectiveness of transfer learning and KL divergence, with individual increase of 29.98 and 29.43%, respectively, in prediction performance and 38.70% increase when the two were used together. The drastically increased data coverage (43.80-73.6%) after imputation powers downstream analyses involving methylomes that cannot be effectively done using the very low coverage profiles (0.06-1.47%) before imputation.

19.
Eur J Cell Biol ; 101(2): 151210, 2022 Apr.
Article En | MEDLINE | ID: mdl-35240557

In mammalian females, oocytes are stored in the ovary and meiosis is arrested at the diplotene stage of prophase I. When females reach puberty oocytes are selectively recruited in cycles to grow, overcome the meiotic arrest, complete the first meiotic division and become mature (ready for fertilization). At a molecular level, the master regulator of prophase I arrest and meiotic resumption is the maturation-promoting factor (MPF) complex, formed by the active form of cyclin dependent kinase 1 (CDK1) and Cyclin B1. However, we still do not have complete information regarding the factors implicated in MPF activation. In this study we document that out of three mammalian serum-glucocorticoid kinase proteins (SGK1, SGK2, SGK3), mouse oocytes express only SGK1 with a phosphorylated (active) form dominantly localized in the nucleoplasm. Further, suppression of SGK1 activity in oocytes results in decreased CDK1 activation via the phosphatase cell division cycle 25B (CDC25B), consequently delaying or inhibiting nuclear envelope breakdown. Expression of exogenous constitutively active CDK1 can rescue the phenotype induced by SGK1 inhibition. These findings bring new insights into the molecular pathways acting upstream of MPF and a better understanding of meiotic resumption control by presenting a new key player SGK1 in mammalian oocytes.


Immediate-Early Proteins , Maturation-Promoting Factor , Animals , Cell Cycle Checkpoints , Female , Immediate-Early Proteins/genetics , Immediate-Early Proteins/metabolism , Mammals/metabolism , Maturation-Promoting Factor/metabolism , Meiosis , Meiotic Prophase I , Mice , Oocytes/metabolism , Protein Serine-Threonine Kinases/genetics
20.
Development ; 149(5)2022 03 01.
Article En | MEDLINE | ID: mdl-35112132

Successful reproduction requires an oocyte competent to sustain early embryo development. By the end of oogenesis, the oocyte has entered a transcriptionally silenced state, the mechanisms and significance of which remain poorly understood. Histone H3.3, a histone H3 variant, has unique cell cycle-independent functions in chromatin structure and gene expression. Here, we have characterised the H3.3 chaperone Hira/Cabin1/Ubn1 complex, showing that loss of function of any of these subunits causes early embryogenesis failure in mouse. Transcriptome and nascent RNA analyses revealed that transcription is aberrantly silenced in mutant oocytes. Histone marks, including H3K4me3 and H3K9me3, are reduced and chromatin accessibility is impaired in Hira/Cabin1 mutants. Misregulated genes in mutant oocytes include Zscan4d, a two-cell specific gene involved in zygote genome activation. Overexpression of Zscan4 in the oocyte partially recapitulates the phenotypes of Hira mutants and Zscan4 knockdown in Cabin1 mutant oocytes partially restored their developmental potential, illustrating that temporal and spatial expression of Zscan4 is fine-tuned at the oocyte-to-embryo transition. Thus, the H3.3 chaperone Hira complex has a maternal effect function in oocyte developmental competence and embryogenesis, through modulating chromatin condensation and transcriptional quiescence.


Cell Cycle Proteins/metabolism , Histone Chaperones/metabolism , Histones/metabolism , Oocytes/growth & development , Oocytes/metabolism , Signal Transduction/genetics , Transcription Factors/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Animals , Cell Cycle Proteins/genetics , Chromatin/metabolism , Embryonic Development/genetics , Female , Gene Knockdown Techniques , Histone Chaperones/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Oogenesis/genetics , Transcription Factors/genetics , Zygote/metabolism
...