Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Anesthesiology ; 139(3): 262-273, 2023 09 01.
Article En | MEDLINE | ID: mdl-37440205

BACKGROUND: Individualized positive end-expiratory pressure (PEEP) guided by dynamic compliance improves oxygenation and reduces postoperative atelectasis in nonobese patients. The authors hypothesized that dynamic compliance-guided PEEP could also reduce postoperative atelectasis in patients undergoing bariatric surgery. METHODS: Patients scheduled to undergo laparoscopic bariatric surgery were eligible. Dynamic compliance-guided PEEP titration was conducted in all patients using a downward approach. A recruitment maneuver (PEEP from 10 to 25 cm H2O at 5-cm H2O step every 30 s, with 15-cm H2O driving pressure) was conducted both before and after the titration. Patients were then randomized (1:1) to undergo surgery under dynamic compliance-guided PEEP (PEEP with highest dynamic compliance plus 2 cm H2O) or PEEP of 8 cm H2O. The primary outcome was postoperative atelectasis, as assessed with computed tomography at 60 to 90 min after extubation, and expressed as percentage to total lung tissue volume. Secondary outcomes included Pao2/inspiratory oxygen fraction (Fio2) and postoperative pulmonary complications. RESULTS: Forty patients (mean ± SD; 28 ± 7 yr of age; 25 females; average body mass index, 41.0 ± 4.7 kg/m2) were enrolled. Median PEEP with highest dynamic compliance during titration was 15 cm H2O (interquartile range, 13 to 17; range, 8 to 19) in the entire sample of 40 patients. The primary outcome of postoperative atelectasis (available in 19 patients in each group) was 13.1 ± 5.3% and 9.5 ± 4.3% in the PEEP of 8 cm H2O and dynamic compliance-guided PEEP groups, respectively (intergroup difference, 3.7%; 95% CI, 0.5 to 6.8%; P = 0.025). Pao2/Fio2 at 1 h after pneumoperitoneum was higher in the dynamic compliance-guided PEEP group (397 vs. 337 mmHg; group difference, 60; 95% CI, 9 to 111; P = 0.017) but did not differ between the two groups 30 min after extubation (359 vs. 375 mmHg; group difference, -17; 95% CI, -53 to 21; P = 0.183). The incidence of postoperative pulmonary complications was 4 of 20 in both groups. CONCLUSIONS: Postoperative atelectasis was lower in patients undergoing laparoscopic bariatric surgery under dynamic compliance-guided PEEP versus PEEP of 8 cm H2O. Postoperative Pao2/Fio2 did not differ between the two groups.


Pulmonary Atelectasis , Respiratory Distress Syndrome , Female , Humans , Positive-Pressure Respiration/methods , Pulmonary Atelectasis/etiology , Pulmonary Atelectasis/prevention & control , Obesity/complications , Lung , Respiratory Distress Syndrome/complications
2.
Sci Total Environ ; 630: 243-253, 2018 Jul 15.
Article En | MEDLINE | ID: mdl-29477822

Supercritical water gasification (SCWG) of the microalga Chlorella pyrenoidosa was examined with a catalyst mixture of Ru/C and Rh/C in a mass ratio of 1:1. The influences of temperature (380-600°C), water density (0-0.197g/cm3), and catalyst loading (0-20wt%) on the yields and composition of the gaseous products and the gasification efficiency were examined. The temperature and water density significantly affected the SCWG of the microalgae. The hydrogen gasification efficiency was more dependent on the temperature, while the carbon gasification efficiency was more dependent on the water density. The gaseous products mainly consisted of CH4, H2, CO, and CO2, with smaller amounts of C2-C3 hydrocarbons. CH4 made up half of the mole fraction of the gaseous products under most reaction conditions. A synergistic effect between Ru/C and Rh/C existed during the SCWG of the microalgae, and this effect favored the production of CH4. The role of the catalyst mixture became indistinct at higher temperatures. Hydrogen atoms from the water were transferred to the gaseous products during the SCWG, leading to hydrogen gasification efficiencies that exceeded 100%. The main components of the bio-oil were aromatics and nitrogen-containing compounds, and the main aromatics consisted of azulene and anthracene. The nitrogen-containing compounds are potential poisons to the catalyst mixture.


Chlorella/physiology , Waste Disposal, Fluid/methods , Water Pollutants/metabolism , Carbon , Catalysis , Gases , Hot Temperature , Hydrogen , Sewage , Temperature
...