Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(6)2024 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-38542376

RESUMEN

MYB (myoblast) protein comes in large quantities and a wide variety of types and plays a role in most eukaryotes in the form of transcription factors (TFs). One of its important functions is to regulate plant responses to various stresses. However, the role of MYB TFs in regulating stress tolerance in strawberries is not yet well understood. Therefore, in order to investigate the response of MYB family members to abiotic stress in strawberries, a new MYB TF gene was cloned from Fragaria vesca (a diploid strawberry) and named FvMYB108 based on its structural characteristics and evolutionary relationships. After a bioinformatics analysis, it was determined that the gene belongs to the R2R3-MYB subfamily, and its conserved domain, phylogenetic relationships, predicted protein structure and physicochemical properties, subcellular localization, etc. were analyzed. After qPCR analysis of the expression level of FvMYB108 in organs, such as the roots, stems, and leaves of strawberries, it was found that this gene is more easily expressed in young leaves and roots. After multiple stress treatments, it was found that the target gene in young leaves and roots is more sensitive to low temperatures and salt stimulation. After these two stress treatments, various physiological and biochemical indicators related to stress in transgenic Arabidopsis showed corresponding changes, indicating that FvMYB108 may be involved in regulating the plant's ability to cope with cold and high-salt stress. Further research has found that the overexpression of this gene can upregulate the expression of AtCBF1, AtCOR47, AtERD10, and AtDREB1A related to low-temperature stress, as well as AtCCA1, AtRD29a, AtP5CS1, and AtSnRK2.4 related to salt stress, enhancing the ability of overexpressed plants to cope with stress.


Asunto(s)
Arabidopsis , Fragaria , Arabidopsis/metabolismo , Tolerancia a la Sal/genética , Fragaria/genética , Fragaria/metabolismo , Filogenia , Genes myb , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas
2.
Saudi J Biol Sci ; 26(8): 1936-1942, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31885485

RESUMEN

Mowing can facilitate the incorporation of cover crop shoots into soil and improve the properties of soils in apple orchards. This article evaluated how apple orchard soil responds to the decomposition of the shoot residues of three cover crops[native mixed herbs (NMS), red clover (RCS), and ryegrass (RES)] in terms of microbial metabolism and biomass, and discussed the relationships between microbial responses and shoot chemistry. The chemical composition of shoots was analysed and a buried bag experiment was carried out to simulate shoot decomposition in an apple orchard. The results revealed significant differences in the chemical compositions and shoot C:N ratios (NMS: 10.9, RCS: 19.1, and RES: 12.9) of the three cover crops. The decomposition of the cover crop shoots promoted microbial metabolism and boosted soil bacterial reproduction (increase in the biomass indicator muramic acid: 19.44, 124.15, and 14.83 mg kg-1, respectively. But there are different types of effects on soil fungal reproduction (change in the biomass indicator glucosamine: 712.51, 887.45, and 103.97 mg kg-1), and they are obviously negative, significantly positive, and non-significant respectively. Thus, the native mixed herbs and red clover are preferable swards for better shoot enhancement in apple orchard.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA