Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 16 de 16
1.
Cancers (Basel) ; 15(15)2023 Jul 29.
Article En | MEDLINE | ID: mdl-37568672

Metastatic melanoma is a deadly disease that claims thousands of lives each year despite the introduction of several immunotherapeutic agents into the clinic over the past decade, inspiring the development of novel therapeutics and the exploration of combination therapies. Our investigations target melanin pigment with melanin-specific radiolabeled antibodies as a strategy to treat metastatic melanoma. In this study, a theranostic approach was applied by first labeling a chimeric antibody targeting melanin, c8C3, with the SPECT radionuclide 203Pb for microSPECT/CT imaging of C57Bl6 mice bearing B16-F10 melanoma tumors. Imaging was followed by radioimmunotherapy (RIT), whereby the c8C3 antibody is radiolabeled with a 212Pb/212Bi "in vivo generator", which emits cytotoxic alpha particles. Using microSPECT/CT, we collected sequential images of B16-F10 murine tumors to investigate antibody biodistribution. Treatment with the 212Pb/212Bi-labeled c8C3 antibody demonstrated a dose-response in tumor growth rate in the 5-10 µCi dose range when compared to the untreated and radiolabeled control antibody and a significant prolongation in survival. No hematologic or systemic toxicity of the treatment was observed. However, administration of higher doses resulted in a biphasic tumor dose response, with the efficacy of treatment decreasing when the administered doses exceeded 10 µCi. These results underline the need for more pre-clinical investigation of targeting melanin with 212Pb-labeled antibodies before the clinical utility of such an approach can be assessed.

2.
Access Microbiol ; 5(12)2023.
Article En | MEDLINE | ID: mdl-38188245

Invasive fungal infections (IFIs) such as mucormycosis are causing devastating morbidity and mortality in immunocompromised patients as anti-fungal agents do not work in the setting of a suppressed immune system. The coronavirus disease 2019 (COVID-19) pandemic has created a novel landscape for IFIs in post-pandemic patients, resulting from severe immune suppression caused by COVID-19 infection, comorbidities (diabetes, obesity) and immunosuppressive treatments such as steroids. The antigen-antibody interaction has been employed in radioimmunotherapy (RIT) to deliver lethal doses of ionizing radiation emitted by radionuclides to targeted cells and has demonstrated efficacy in several cancers. One of the advantages of RIT is its independence of the immune status of a host, which is crucial for immunosuppressed post-COVID-19 patients. In the present work we targeted the fungal pan-antigens 1,3-beta-glucan and melanin pigment, which are present in the majority of pathogenic fungi, with RIT, thus making such targeting pathogen-agnostic. We demonstrated in experimental murine mucormycosis in immunocompetent and immunocompromised mice that lutetium-177 (177Lu)-labelled antibodies to these two antigens effectively decreased the fungal burden in major organs, including the brain. These results are encouraging because they show the effectiveness of pathogen-agnostic RIT in significantly decreasing fungal burden in vivo, while they can also potentially be applied to treat the broad range of invasive fungal infections that express the pan-antigens 1,3-beta-glucan or melanin.

3.
Molecules ; 27(19)2022 Oct 05.
Article En | MEDLINE | ID: mdl-36235126

Objective: Positron emission tomography (PET) imaging is a powerful non-invasive method to determine the in vivo behavior of biomolecules. Determining biodistribution and pharmacokinetic (PK) properties of targeted therapeutics can enable a better understanding of in vivo drug mechanisms such as tumor uptake, off target accumulation and clearance. Zirconium-89 (89Zr) is a readily available tetravalent PET-enabling radiometal that has been used to evaluate the biodistribution and PK of monoclonal antibodies. In the current study, we performed in vitro and in vivo characterization of 89Zr-lintuzumab, a radiolabeled anti-CD33 antibody, as a model to evaluate the in vivo binding properties in preclinical models of AML. Methods: Lintuzumab was conjugated to p-SCN-Bn-deferoxamine (DFO) and labeled with 89Zr using a 5:1 µCi:µg specific activity at 37 °C for 1h. The biological activity of 89Zr-lintuzumab was evaluated in a panel of CD33 positive cells using flow cytometry. Fox Chase SCID mice were injected with 2 × 106 OCI-AML3 cells into the right flank. After 12 days, a cohort of mice (n = 4) were injected with 89Zr-lintuzumab via tail vein. PET/CT scans of mice were acquired on days 1, 2, 3 and 7 post 89Zr-lintuzumab injection. To demonstrate 89Zr-lintuzumab specific binding to CD33 expressing tumors in vivo, a blocking study was performed. This cohort of mice (n = 4) was injected with native lintuzumab and 24 h later 89Zr-lintuzumab was administered. This group was imaged 3 and 7 days after injection of 89Zr-lintuzumab. A full ex vivo biodistribution study on both cohorts was performed on day 7. The results from the PET image and ex vivo biodistribution studies were compared. Results: Lintuzumab was successfully radiolabeled with 89Zr resulting in a 99% radiochemical yield. The 89Zr-lintuzumab radioconjugate specifically binds CD33 positive cells in a similar manner to native lintuzumab as observed by flow cytometry. PET imaging revealed high accumulation of 89Zr-lintuzumab in OCI-AML3 tumors within 24h post-injection of the radioconjugate. The 89Zr-lintuzumab high tumor uptake remains for up to 7 days. Tumor analysis of the PET data using volume of interest (VOI) showed significant blocking of 89Zr-lintuzumab in the group pre-treated with native lintuzumab (pre-blocked group), thus indicating specific targeting of CD33 on OCI-AML3 cells in vivo. The tumor uptake findings from the PET imaging study are in agreement with those from the ex vivo biodistribution results. Conclusions: PET imaging of 89Zr-lintuzumab shows high specific uptake in CD33 positive human OCI-AML3 tumors. The results from the image study agree with the observations from the ex vivo biodistribution study. Our findings collectively suggest that PET imaging using 89Zr-lintuzumab could be a powerful drug development tool to evaluate binding properties of anti-CD33 monoclonal antibodies in preclinical cancer models.


Deferoxamine , Zirconium , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal, Humanized , Cell Line, Tumor , Deferoxamine/chemistry , Deferoxamine/pharmacology , Humans , Mice , Mice, SCID , Positron Emission Tomography Computed Tomography/methods , Positron-Emission Tomography/methods , Tissue Distribution , Zirconium/chemistry
4.
Int J Mol Sci ; 23(17)2022 Aug 23.
Article En | MEDLINE | ID: mdl-36076924

Nearly 100,000 individuals are expected to be diagnosed with melanoma in the United States in 2022. Treatment options for late-stage metastatic disease up until the 2010s were few and offered only slight improvement to the overall survival. The introduction of B-RAF inhibitors and anti-CTLA4 and anti-PD-1/PD-L1 immunotherapies into standard of care brought measurable increases in the overall survival across all stages of melanoma. Despite the improvement in the survival statistics, patients treated with targeted therapies and immunotherapies are subject to very serious side effects, the development of drug resistance, and the high costs of treatment. This leaves room for the development of novel approaches as well as for the exploration of novel combination therapies for the treatment of metastatic melanoma. One such approach is targeting melanin pigment with radionuclide therapy. Advances in melanin-targeting radionuclide therapy of melanoma can be viewed from two spheres: (1) radioimmunotherapy (RIT) and (2) radiolabeled small molecules. The investigation of mechanisms of the action and efficacy of targeting melanin in melanoma treatment by RIT points to the involvement of the immune system such as complement dependent cytotoxicity. The combination of RIT with immunotherapy presents synergistic killing in mouse melanoma models. The field of radiolabeled small molecules is focused on radioiodinated compounds that have the ability to cross the cellular membranes to access intracellular melanin and can be applied in both therapy and imaging as theranostics. Clinical applications of targeting melanin with radionuclide therapies have produced encouraging results and clinical work is on-going. Continued work on targeting melanin with radionuclide therapy as a monotherapy, or possibly in combination with standard of care agents, has the potential to strengthen the current treatment options for melanoma patients.


Melanins , Melanoma , Animals , Immunotherapy , Melanoma/radiotherapy , Mice , Radioimmunotherapy/methods , Radioisotopes/therapeutic use
5.
Pharmaceuticals (Basel) ; 15(1)2021 Dec 22.
Article En | MEDLINE | ID: mdl-35056067

BACKGROUND: Osteosarcoma (OS) has an overall patient survival rate of ~70% with no significant improvements in the last two decades, and novel effective treatments are needed. OS in companion dogs is phenotypically close to human OS, which makes a comparative oncology approach to developing new treatments for OS very attractive. We have recently created a novel human antibody, IF3 to IGF2R, which binds to this receptor on both human and canine OS tumors. Here, we evaluated the efficacy and safety of radioimmunotherapy with 177Lu-labeled IF3 of mice bearing canine-patient-derived tumors and performed canine and human dosimetry calculations. METHODS: Biodistribution and microSPECT/CT imaging with 111In-IF3 was performed in mice bearing canine OS Gracie tumors, and canine and human dosimetry calculations were performed based on these results. RIT of Gracie-tumor-bearing mice was completed with 177Lu-IF3. RESULTS: Biodistribution and imaging showed a high uptake of 111In-IF3 in the tumor and spleen. Dosimetry identified the tumor, spleen and pancreas as the organs with the highest uptake. RIT was very effective in abrogating tumor growth in mice with some spleen-associated toxicity. CONCLUSIONS: These results demonstrate that RIT with 177Lu-IF3 targeting IGF2R on experimental canine OS tumors effectively decreases tumor growth. However, because of the limitations of murine models, careful evaluation of the possible toxicity of this treatment should be performed via nuclear imaging and image-based dosimetry in healthy dogs before clinical trials in companion dogs with OS can be attempted.

6.
Int J Mol Sci ; 21(22)2020 Nov 18.
Article En | MEDLINE | ID: mdl-33218169

Melanoma incidence continues to rise, and while therapeutic approaches for early stage cases are effective, metastatic melanoma continues to be associated with high mortality. Immune checkpoint blockade (ICB) has demonstrated clinical success with approved drugs in cohorts of patients with metastatic melanoma and targeted radionuclide therapy strategies showed promise in several clinical trials against various cancers including metastatic melanoma. This led our group to investigate the combination of these two treatments which could be potentially offered to patients with metastatic melanoma not responsive to ICB alone. Previously, we have demonstrated that a combination of humanized anti-melanin antibody conjugated to 213Bismuth and anti-PD-1 ICB reduced tumor growth and increased survival in the Cloudman S91 murine melanoma DBA/2 mouse model. In the current study, we sought to improve the tumoricidal effect by using the long-lived radionuclides 177Lutetium and 225Actinium. Male Cloudman S91-bearing DBA/2 mice were treated intraperitoneally with PBS (Sham), unlabeled antibody to melanin, anti-PD-1 ICB, 177Lutetium or 225Actinium RIT, or a combination of ICB and RIT. Treatment with anti-PD-1 alone or low-dose 177Lutetium RIT alone resulted in modest tumor reduction, while their combination significantly reduced tumor growth and increased survival, suggesting synergy. 225Actinium RIT, alone or in combination with ICB, showed no therapeutic benefit, suggesting that the two radionuclides with different energetic properties work in distinct ways. We did not detect an increase in tumor-infiltrating T cells in the tumor microenvironment, which suggests the involvement of alternative mechanisms that improve the effect of combination therapy beyond that observed in the single therapies.


Immune Checkpoint Inhibitors/pharmacology , Immunoconjugates/pharmacology , Immunotherapy/methods , Melanins/antagonists & inhibitors , Melanoma, Experimental/therapy , Radioimmunotherapy/methods , Animals , Cell Line, Tumor , Combined Modality Therapy , Humans , Immunoconjugates/immunology , Male , Melanins/immunology , Melanins/metabolism , Melanoma, Experimental/immunology , Melanoma, Experimental/metabolism , Mice, Inbred DBA , Survival Analysis , Treatment Outcome , Tumor Burden/drug effects , Tumor Burden/immunology
7.
Molecules ; 25(16)2020 Aug 08.
Article En | MEDLINE | ID: mdl-32784359

Background: With the limited options available for therapy to treat invasive fungal infections (IFI), radioimmunotherapy (RIT) can potentially offer an effective alternative treatment. Microorganism-specific monoclonal antibodies have shown promising results in the experimental treatment of fungal, bacterial, and viral infections, including our recent and encouraging results from treating mice infected with Blastomyces dermatitidis with 213Bi-labeled antibody 400-2 to (1→3)-ß-glucan. In this work, we performed a safety study of 213Bi-400-2 antibody in healthy dogs as a prelude for a clinical trial in companion dogs with acquired invasive fungal infections and later on in human patients with IFI. Methods: Three female beagle dogs (≈6.1 kg body weight) were treated intravenously with 155.3, 142.5, or 133.2 MBq of 213Bi-400-2 given as three subfractions over an 8 h period. RBC, WBC, platelet, and blood serum biochemistry parameters were measured periodically for 6 months post injection. Results: No significant acute or long-term side effects were observed after RIT injections; only a few parameters were mildly and transiently outside reference change value limits, and a transient atypical morphology was observed in the circulating lymphocyte population of two dogs. Conclusions: These results demonstrate the safety of systemic 213Bi-400-2 administration in dogs and provide encouragement to pursue evaluation of RIT of IFI in companion dogs.


Alpha Particles , Antibodies, Monoclonal/adverse effects , Antibodies, Monoclonal/chemistry , Bismuth/chemistry , Invasive Fungal Infections/therapy , Radioimmunotherapy/adverse effects , Radioisotopes/chemistry , Safety , Animals , Antibodies, Monoclonal/therapeutic use , Blastomyces/immunology , Blastomyces/physiology , Dogs , Invasive Fungal Infections/immunology , Mice
8.
Sci Rep ; 9(1): 11476, 2019 08 07.
Article En | MEDLINE | ID: mdl-31391495

Osteosarcoma (OS) represents 3.4% of all childhood cancers with overall survival of 70% not improving in 30 years. The consistent surface overexpression of insulin-like growth factor-2 receptor (IGF2R) has been reported in commercial and patient-derived xenograft (PDX) OS cell lines. We aimed to assess efficacy and safety of treating PDX and commercial OS tumors in mice with radiolabeled antibody to IGF2R and to investigate IGF2R expression on canine OS tumors. IGF2R expression on human commercial lines 143B and SaOS2 and PDX lines OS-17, OS-33 and OS-31 was evaluated by FACS. The biodistribution and microSPECT/CT imaging with 111Indium-2G11 mAb was performed in 143B and OS-17 tumor-bearing SCID mice and followed by radioimmunotherapy (RIT) with 177Lutetium-2G11 and safety evaluation. IGF2R expression in randomly selected canine OS tumors was measured by immunohistochemistry. All OS cell lines expressed IGF2R. Biodistribution and microSPECT/CT revealed selective uptake of 2G11 mAb in 143B and OS-17 xenografts. RIT significantly slowed down the growth of OS-17 and 143B tumors without local and systemic toxicity. Canine OS tumors expressed IGF2R. This study demonstrates the feasibility of targeting IGF2R on OS in PDX and spontaneous canine tumors and sets the stage for further development of RIT of OS using comparative oncology.


Dog Diseases/therapy , Immunoconjugates/administration & dosage , Osteosarcoma/therapy , Radioimmunotherapy/methods , Receptor, IGF Type 2/metabolism , Animals , Bone and Bones/diagnostic imaging , Bone and Bones/drug effects , Bone and Bones/pathology , Bone and Bones/radiation effects , Cell Line, Tumor , Cell Proliferation , Dog Diseases/diagnostic imaging , Dog Diseases/pathology , Dogs , Feasibility Studies , Female , Humans , Mice , Osteosarcoma/diagnostic imaging , Osteosarcoma/pathology , Receptor, IGF Type 2/antagonists & inhibitors , Single Photon Emission Computed Tomography Computed Tomography , X-Ray Microtomography , Xenograft Model Antitumor Assays
9.
Oncoimmunology ; 8(8): 1607673, 2019.
Article En | MEDLINE | ID: mdl-31413916

Daratumumab is an anti-CD38 directed monoclonal antibody approved for the treatment of multiple myeloma (MM) and functions primarily via Fc-mediated effector mechanisms such as complement-dependent cytotoxicity (CDC), antibody-dependent cell cytotoxicity (ADCC), antibody-dependent cellular phagocytosis, and T-cell activation. However, not all patients respond to daratumumab therapy and management of MM remains challenging. Radioimmunotherapy with alpha particle-emitting radionuclides represents a promising approach to significantly enhance the potency of therapeutic antibodies in cancer treatment. Here we report the results of mechanistic and feasibility studies using daratumumab radiolabeled with an alpha-emitter 225Actinium for therapy of MM. CD38-positivelymphoma Daudi cell line and MM cell lines KMS-28BM and KMS-28PE were treated in vitro with 225Ac-daratumumab. 225Ac-daratumumab Fc-functional properties were assessed with C1q binding and ADCC assays. The pharmacokinetics and tumor uptake of 111In-daratumumab in Daudi tumor-bearing severe combined immunodeficiency (SCID) mice were measured with microSPECT/CT. The therapeutic effects of 225Ac-daratumumab on Daudi and KSM28BM tumors in mice and treatment side effects were evaluated for 50 days posttreatment. The safety of 225Ac-labeled antimurine CD38 mAb in immunocompetent mice was also evaluated. 225Ac-daratumumab efficiently and specifically killed CD38-positive tumor cells in vitro, while its complement binding and ADCC functions remained unaltered. MicroSPECT/CT imaging demonstrated fast clearance of the radiolabeled daratumumab from the circulation and tissues, but prolonged retention in the tumor up to 10 days. Therapy and safety experiments with 225Ac-daratumumab showed a significant increase in the antitumor potency in comparison to naked antibody without any significant side effects. Our results highlight the potential of targeting alpha-emitters to tumors as a therapeutic approach and suggest that 225Ac-daratumumab may be a promising therapeutic strategy for the treatment of hematologic malignancies.

10.
Pharmaceutics ; 11(7)2019 Jul 18.
Article En | MEDLINE | ID: mdl-31323785

Melanoma is a cancer with increasing incidence and there is a need for alternatives to immunotherapy within effective approaches to treatment of metastatic melanoma. We performed comparative radioimmunotherapy (RIT) of experimental B16-F10 melanoma with novel humanized IgG to melanin h8C3 labeled with a beta emitter, 177Lu, and an alpha-emitter, 213Bi, as well as biodistribution, microSPECT/CT imaging, and mouse and human dosimetry calculations. microSPECT/CT imaging showed that a humanized antibody that targets "free" melanin in the tumor microenvironment had high tumor uptake in B16F10 murine melanoma in C57Bl/6 mice, with little to no uptake in naturally melanized tissues. Extrapolation of the mouse dosimetry data to an adult human demonstrated that doses delivered to major organs and the whole body by 177Lu-h8C3 would be approximately two times higher than those delivered by 213Bi-h8C3, while the doses to the tumor would be almost similar. RIT results indicated that 213Bi-h8C3 was more effective in slowing down the tumor growth than 177Lu-h8C3, while both radiolabeled antibodies did not produce significant hematologic or systemic side effects. We concluded that h8C3 antibody labeled with 213Bi is a promising reagent for translation into a clinical trial in patients with metastatic melanoma.

11.
Cancer Med ; 8(11): 5289-5300, 2019 Sep.
Article En | MEDLINE | ID: mdl-31309741

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) accounts for >90% of pancreatic malignancies, and has median survival of <6 months. There is an urgent need for diagnostic and therapeutic options for PDAC. Centrin1 (CETN1) is a novel member of Cancer/Testis Antigens, with a 25-fold increase of CETN1 gene expression in PDX from PDAC patients. The absence of selective anti-CETN1 antibodies is hampering CETN1 use for diagnosis and therapy. Here we report the generation of highly specific for CETN1 antibodies and their evaluation for radioimmunoimaging and radioimmunotherapy (RIT) of experimental PDAC. METHODS: The antibodies to CETN1 were generated via mice immunization with immunogenic peptide distinguishing CETN1 from CETN2. Patient tumor microarrays were used to evaluate the binding of the immune serum to PDAC versus normal pancreas. The antibodies were tested for their preferential binding to CETN1 over CETN2 by ELISA. Mice bearing PDAC MiaPaCa2 xenografts were imaged with microSPECT/CT and treated with 213 Bi- and 177 Lu-labeled antibodies to CETN1. RESULTS: Immune serum bind to 50% PDAC cases on patient tumor microarrays with no specific binding to normal pancreas. Antibodies demonstrated preferential binding to CETN1 versus CETN2. Antibody 69-11 localized to PDAC xenografts in mice in vivo and ex vivo. RIT of PDAC xenografts with 213 Bi-labeled antibodies was effective, safe, and CETN1-specific. CONCLUSIONS: The results demonstrate the ability of these novel antibodies to detect CETN1 both in vitro and in vivo; as well, the RIT treatment of experimental PDAC when radiolabeled with 213 Bi is highly efficient and safe. Further evaluation of these novel reagents for diagnosis and treatment of PDAC is warranted.


Antibodies , Antigens, Neoplasm , Membrane Proteins , Molecular Imaging , Pancreatic Neoplasms/diagnosis , Pancreatic Neoplasms/therapy , Radioimmunodetection , Radioimmunotherapy , Amino Acid Sequence , Animals , Antigens, Neoplasm/chemistry , Antigens, Neoplasm/metabolism , Cell Line, Tumor , Disease Models, Animal , Female , Humans , Immunoglobulin G/immunology , Immunoglobulin M/immunology , Male , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Mice , Molecular Imaging/methods , Pancreatic Neoplasms/etiology , Radioimmunodetection/methods , Radioimmunotherapy/methods , Single Photon Emission Computed Tomography Computed Tomography , Xenograft Model Antitumor Assays
12.
Pharmaceutics ; 10(4)2018 Dec 05.
Article En | MEDLINE | ID: mdl-30563123

(1) Background: Monoclonal antibodies are used in the treatment of multiple conditions including cancer, autoimmune disorders, and infectious diseases. One of the initial steps in the selection of an antibody candidate for further pre-clinical development is determining its pharmacokinetics in small animal models. The use of mass spectrometry and other techniques to determine the fate of these antibodies is laborious and expensive. Here we describe a straightforward and highly reproducible methodology for utilizing radiolabeled antibodies for pharmacokinetics studies. (2) Methods: Commercially available bifunctional linker CHXA" and 111Indium radionuclide were used. A melanin-specific chimeric antibody A1 and an isotype matching irrelevant control A2 were conjugated with the CHXA", and then radiolabeled with 111In. The biodistribution was performed at 4 and 24 h time points in melanoma tumor-bearing and healthy C57BL/6 female mice. (3) The biodistribution of the melanin-binding antibody showed the significant uptake in the tumor, which increased with time, and very low uptake in healthy melanin-containing tissues such as the retina of the eye and melanized skin. This biodistribution pattern in healthy tissues was very close to that of the isotype matching control antibody. (4) Conclusions: The biodistribution experiment allows us to assess the pharmacokinetics of both antibodies side by side and to make a conclusion regarding the suitability of specific antibodies for further development.

13.
Cancer Biother Radiopharm ; 33(8): 349-355, 2018 Oct.
Article En | MEDLINE | ID: mdl-30010404

Radioimmunotherapy offers an effective way to direct ionizing radiation to cancer cells through attachment of radionuclides to antibodies while limiting negative effects of off-target irradiation. This, however, requires effective facile methods for attachment of therapeutic radionuclides onto antibodies. Herein, the authors report their efforts in evaluating N-succinimidyl S-acetylthioacetate (SATA), a commercially available reagent, for use as a bifunctional chelating agent (BCA) to attach 188Rhenium (188Re) onto h8C3, a humanized IgG antibody that can effectively target extracellular melanin present in malignant melanoma. Micro single photon emission computer tomography/computer tomography was used to determine an effective timeline for antibody uptake in B16-F10 tumor bearing C57BL6 mice guiding the selection of 188Re with its 16.9 h physical half-life. Radio instant thin layer chromatography coupled with radio high-performance liquid chromatography was used to assess radioisotope incorporation, as well as stability during the labeling process for SATA conjugated h8C3. It was determined that despite the relatively mild conditions used, incorporation of the SATA conjugate resulted in antibody instability during labeling requiring a different BCA to facilitate rhenium incorporation onto the antibodies.


Antibodies, Monoclonal, Humanized/chemistry , Antibodies, Monoclonal/chemistry , Radioisotopes/chemistry , Rhenium/chemistry , Succinimides/chemistry , Sulfides/chemistry , Animals , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal, Humanized/therapeutic use , Chelating Agents/chemistry , Female , Humans , Ligands , Melanoma/radiotherapy , Mice , Mice, Inbred C57BL , Radioimmunotherapy/methods , Radioisotopes/therapeutic use , Radiopharmaceuticals/chemistry , Rhenium/therapeutic use
14.
Microb Cell ; 3(11): 540-553, 2016 Nov 04.
Article En | MEDLINE | ID: mdl-28357323

The SNF1 kinase in Saccharomyces cerevisiae is an excellent model to study the regulation and function of the AMP-dependent protein kinase (AMPK) family of serine-threonine protein kinases. Yeast discoveries regarding the regulation of this non-hormonal sensor of metabolic/environmental stress are conserved in higher eukaryotes, including poly-ubiquitination of the α-subunit of yeast (Snf1) and human (AMPKα) that ultimately effects subunit stability and enzyme activity. The ubiquitin-cascade enzymes responsible for targeting Snf1 remain unknown, leading us to screen for those that impact SNF1 kinase function. We identified the E2, Ubc1, as a regulator of SNF1 kinase function. The decreased Snf1 abundance found upon deletion of Ubc1 is not due to increased degradation, but instead is partly due to impaired SNF1 gene expression, arising from diminished abundance of the Forkhead 1/2 proteins, previously shown to contribute to SNF1 transcription. Ultimately, we report that the Fkh1/2 cognate transcription factor, Hcm1, fails to enter the nucleus in the absence of Ubc1. This implies that Ubc1 acts indirectly through transcriptional effects to modulate SNF1 kinase activity.

15.
J Biol Chem ; 290(25): 15393-15404, 2015 Jun 19.
Article En | MEDLINE | ID: mdl-25869125

The enzyme family of heterotrimeric AMP-dependent protein kinases is activated upon low energy states, conferring a switch toward energy-conserving metabolic pathways through immediate kinase actions on enzyme targets and delayed alterations in gene expression through its nuclear relocalization. This family is evolutionarily conserved, including the presence of a ubiquitin-associated (UBA) motif in most catalytic subunits. The potential for the UBA domain to promote protein associations or direct subcellular location, as seen in other UBA-containing proteins, led us to query whether the UBA domain within the yeast AMP-dependent protein kinase ortholog, SNF1 kinase, was important in these aspects of its regulation. Here, we demonstrate that conserved UBA motif mutations significantly alter SNF1 kinase activation and biological activity, including enhanced allosteric subunit associations and increased oxidative stress resistance and life span. Significantly, the enhanced UBA-dependent longevity and oxidative stress response are at least partially dependent on the Fkh1 and Fkh2 stress response transcription factors, which in turn are shown to influence Snf1 gene expression.


Gene Expression Regulation, Enzymologic/physiology , Gene Expression Regulation, Fungal/physiology , Oxidative Stress/physiology , Protein Serine-Threonine Kinases/biosynthesis , Saccharomyces cerevisiae/enzymology , Amino Acid Motifs , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Enzyme Activation/genetics , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Mutation , Protein Serine-Threonine Kinases/genetics , Protein Structure, Tertiary , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
16.
Cell Mol Neurobiol ; 30(4): 607-29, 2010 May.
Article En | MEDLINE | ID: mdl-20063055

During aging, there is a decrease both in the stability of central nervous system (CNS) myelin once formed and in the efficiency of its repair by oligodendrocytes (OLs). To study CNS remyelination during aging, we used the cuprizone (a copper chelator) mouse model. Inclusion of cuprizone in the diet kills mature OLs and demyelinates axons in the rostral corpus callosum (CC) of mice, which enabled us to characterize age-related changes (i.e., 2-16 months of age) in glial cell response during the recruitment (i.e., demyelination) and differentiation (i.e., remyelination) phases of myelin repair. We have found that the time between 12 and 16 months of age is a critical period during which there is an age-related decrease in the number of OL lineage cells (Olig2(Nuc)+ve/GFAP-ve cells) in the rostral CC of both control mice and mice recovering from cuprizone-induced demyelination. Our results also show there was an age-related impaired recruitment of progenitor cells to replace lost OLs in spite of there being no major age-related decrease in the size of the progenitor cell pool (PDGFalphaR+ve/GFAP-ve, and Olig2(Nuc) +ve/PDGFalphaR+ve cells). However, there were cuprizone-induced increased numbers of astrocyte progenitor cells (Olig2(Cyto)+ve/PDGFalphaR+ve) in these same mice; thus PDGFalphaR+ve progenitor cells in mice as old as 16 months of age retain the ability to differentiate into astrocytes, with this fate choice occurring following cytoplasmic translocation of Olig2. These data reveal for the first time age-related differences in the differentiation of PDGFalphaR+ve progenitor cells into OLs and astrocytes and lead us to suggest that during aging there must be a transcriptional switch mechanism in the progenitor cell fate choice in favor of astrocytes. This may at least partially explain the age-related decrease in efficiency of OL myelination and remyelination.


Aging/physiology , Corpus Callosum/cytology , Cuprizone/pharmacology , Gene Expression/drug effects , Myelin Sheath , Oligodendroglia , Transcription Factors , Animals , Behavior, Animal/drug effects , Behavior, Animal/physiology , Biomarkers/metabolism , Cell Lineage/drug effects , Chelating Agents/pharmacology , Corpus Callosum/physiology , Diet , Humans , Mice , Mice, Inbred C57BL , Myelin Sheath/genetics , Myelin Sheath/metabolism , Oligodendroglia/cytology , Oligodendroglia/drug effects , Oligodendroglia/physiology , Stem Cells/cytology , Stem Cells/drug effects , Stem Cells/physiology , Transcription Factors/genetics , Transcription Factors/metabolism
...