Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 18 de 18
1.
Colloids Surf B Biointerfaces ; 234: 113722, 2024 Feb.
Article En | MEDLINE | ID: mdl-38160473

Biomimetic magnetic nanoparticles (BMNPs) mediated by MamC have proven to be photothermal agents able to allow an optimized cytotoxicity against tumoral cells when used simultaneously as drug nanotransporters and as hyperthermia agents. However, it remains unclear whether BMNPs need to be internalized by the cells and/or if there is a threshold for internal Fe concentration for the photothermal therapy to be effective. In this study, three different situations for photothermal treatments have been simulated to disentangle the effect of BMNPs cell uptake on cell viability after photothermal treatments. Human hepatoblastoma (HepG2) cell line was treated with suspensions of BMNPs, and protocols were developed to have only intracellular BMNPs, only extracellular BMNPs or both, followed by photothermal exposure of the treated cell cultures. Our data demonstrate that: (1) Although the heating efficiency of the photothermal agent is not altered by its location (intra/extracellular), the intracellular location of BMNPs is crucial to ensure the cytotoxic effect of photothermal treatments, especially at low Fe concentration. In fact, the concentration of BMNPs needed to reach the same cytotoxic effect following upon laser irradiation of 0.2 W/cm2 is three times larger if BMNPs are located extracellularly compared to that needed if BMNPs are located intracellularly; (2) For a given location of the BMNPs, cell death increases with BMNPs (or Fe) concentration. When BMNPs are located intracellularly, there is a threshold for Fe concentration (∼ 0.5 mM at laser power intensities of 0.1 W/cm2) needed to affect cell viability following upon cell exposure to photothermia. (3) Bulk temperature rise is not the only factor accounting for cell death. Actually, temperature increases inside the cells cause more damage to cell structures and trigger cell death more efficiently than an increase in the temperature outside the cell.


Hyperthermia, Induced , Magnetite Nanoparticles , Nanoparticles , Humans , Hyperthermia, Induced/methods , Magnetite Nanoparticles/chemistry , Biomimetics , Cell Line, Tumor , Phototherapy/methods
2.
Int J Biol Macromol ; 189: 206-213, 2021 Oct 31.
Article En | MEDLINE | ID: mdl-34419547

The design of new strategies to increase the effectiveness of the antibacterial treatments is a main goal in public health. So, the aim of the study was to achieve a local antibacterial directed therapy as novel alternative allowing both, the delivery of the drug at the target, while minimizing undesirable side effects, thus anticipating an enhanced effectiveness. Hence, we have developed an innovative nanoformulation composed by biomimetic magnetic nanoparticles functionalized with the antimicrobial peptide AS-48 and its potential against Gram-positive and Gram-negative bacteria, either by itself or combined with magnetic hyperthermia has been investigated. Besides, the physical properties, binding efficiency, stability and mechanism of action of this nanoassembly are analyzed. Remarkably, the nanoassembly has a strong bactericidal effect on Gram-positive bacteria, but surprisingly also on E. coli and, finally, when combined with magnetic hyperthermia, on P. aeruginosa and K. pneumoniae. The results obtained represent a breakthrough since it allows a local treatment of infections, reducing and concentrating the dose of antimicrobial compounds, avoiding secondary effects, including the resistance generation and particularly because the combination with magnetic hyperthermia helps sensitizing resistant bacteria to the bactericidal effect of AS-48. Thus, this new formulation should be considered a promising tool in the antibacterial fight.


Anti-Bacterial Agents/pharmacology , Biomimetics , Hyperthermia, Induced , Immobilized Proteins/pharmacology , Magnetic Phenomena , Magnetite Nanoparticles/chemistry , Peptides/pharmacology , Bacteria/drug effects , Bacteria/growth & development , Kinetics , Magnetite Nanoparticles/ultrastructure , Microbial Sensitivity Tests , Particle Size
3.
Food Chem ; 341(Pt 2): 128262, 2021 Mar 30.
Article En | MEDLINE | ID: mdl-33038800

Given the growing tendency of consumers to choose products with natural ingredients, food industries have directed scientific research in this direction. In this regard, algae are an attractive option for the research, since they can synthesize a group of secondary metabolites, called phenolic compounds, associated with really promising properties and bioactivities. The objective of this work was to classify the major phenolic compounds, compare the effectiveness of the different extractive techniques used for their extraction, from traditional systems (like heat assisted extraction) to the most advance ones (such as ultrasound, microwave or supercritical fluid extraction); the available methods for identification and quantification; the stability of the enriched extract in phenolic compounds and the main bioactivities described for these secondary metabolites, to offer an overview of the situation to consider if it is possible and/or convenient an orientation of phenolic compounds from algae towards an industrial application.


Anti-Infective Agents/pharmacology , Antineoplastic Agents, Phytogenic/pharmacology , Antioxidants/pharmacology , Phenols/pharmacology , Plant Extracts/chemistry , Seaweed/chemistry , Anti-Infective Agents/chemistry , Anti-Infective Agents/isolation & purification , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Antioxidants/chemistry , Antioxidants/isolation & purification , Phenols/chemistry , Phenols/isolation & purification , Seawater , Structure-Activity Relationship
4.
Food Funct ; 11(10): 8493-8515, 2020 Oct 21.
Article En | MEDLINE | ID: mdl-33034610

Wild edible plants (WEPs) have been consumed since ancient times. They are considered as non-domesticated plants that grow spontaneously in nature, particularly in forests and bushlands, where they can be found and collected to be incorporated into human nutrition. Increasingly, WEPs are gaining importance as they are potential sources of food due to their nutritional value, besides showing positive health effects and offer innovative applications in haute cuisine. As these autochthonous plants grow naturally in the environment, they are more suitable to adapt to different climatic conditions as well as biotic and abiotic factors. Therefore, a door has been opened for their possible cultivation as they seem to require fewer expenses than other commercially cultivated plants. Moreover, the consumers demand for new products of natural origin that are sustainable and ecologically labeled have also boosted WEPs' recovery and incorporation into the market. In addition, they are considered as promising sources of essential compounds needed not only in human diet including carbohydrates, proteins, and lipids but also of other minor compounds as phenols, vitamins, or carotenoids that have shown numerous beneficial bioactivities such as antioxidants, anti-inflammatory, or anti-tumor activity. The use of these plants rich in bioactive molecules could be beneficial from the health point of view as the human body is not always capable of producing enough defenses, for instance, preventing oxidative damage. In particular, the presence of phenolic compounds in these vegetal matrices is supposed to provide a prophylactic effect against further pathogenesis and disorders related to aging or oxidative stresses. Regarding all this information based on traditional knowledge and ethnobotanical data, different WEPs found in the Northwestern region of Spain were selected, namely, Mentha suaveolens, Glechoma hederacea, Prunus spinosa, Apium nodiflorum, Artemisia absinthium, Silybum marianum, Picris hieracioides, Portulaca oleracea, Crithmum maritimum, and the genus Amaranthus. However, even though tradition and popular knowledge are excellent tools for the exploitation of these plants, it is necessary to develop regulations in this aspect to assure safety and veracity of food products. This article aims to review the main aspects of their bioactive properties, their traditional use, and the possibility of their incorporation into the market as new functional foods, looking at innovative and healthy gastronomic applications.


Diet , Food , Health , Nutritive Value , Plants, Edible , Antioxidants/analysis , Carotenoids/analysis , Humans , Legislation, Food , Plants, Edible/chemistry , Polyphenols/analysis , Spain , Vitamins/analysis
5.
Antibiotics (Basel) ; 9(10)2020 Oct 17.
Article En | MEDLINE | ID: mdl-33080894

The search for food resources is a constant in human history. Nowadays, the search for natural and safe food supplies is of foremost importance. Accordingly, there is a renewed interest in eco-friendly and natural products for substitution of synthetic additives. In addition, microbial contamination of food products during their obtaining and distribution processes is still a sanitary issue, and an important target for the food industry is to avoid food contamination and its related foodborne illnesses. These diseases are fundamentally caused by certain microorganisms listed in this review and classified according to their Gram negative or positive character. Algae have proven to possess high nutritional value and a wide variety of biological properties due to their content in active compounds. Among these capabilities, macroalgae are recognized for having antimicrobial properties. Thus, the present paper revises the actual knowledge of microbial contaminants in the food industry and proposes antimicrobial algal compounds against those pathogenic bacteria responsible for food contamination as valuable molecules for its growth inhibition. The capacity of algae extracts to inhibit some major food pathogen growth was assessed. Moreover, the main applications of these compounds in the food industry were discussed while considering their favorable effects in terms of food safety and quality control.

6.
Food Chem ; 330: 127197, 2020 Nov 15.
Article En | MEDLINE | ID: mdl-32540521

Plants have been traditionally used for the treatment of different types of illness, due to biomolecules with recognised benefits. Rosaceae family is used in traditional Galician medicine. The following plants Agrimonia eupatoria, Crataegus monogyna, Filipendula ulmaria, Geum urbanum, Potentilla erecta and Rosa canina are usually found in treatments. The aim of this study is to perform an ethnobotanical review about the bioactive compounds of these plants and their different bioactivities, both studied in vitro and in vivo. The nature of the bioactive compounds is varied, highlighting the presence of different phenolic compounds, such as phenolic acids, flavonoids or tannins. Understanding the beneficial effects of the administration of the whole plant or target tissues from A. eupatoria, C. monogyna, F. ulmaria, G. urbanum, P. erecta and R. canina as well as those from their individual compounds could lead to the development of new drugs based on the use of natural ingredients.


Rosaceae/chemistry , Industrial Development , Phenols/chemistry
7.
Food Funct ; 11(6): 4853-4877, 2020 Jun 24.
Article En | MEDLINE | ID: mdl-32463400

Planet globalization, population growth and its consequent need to produce large amounts of food, or individual economic benefits and the prioritization of this over environment health, are factors that that have contributed to the development, in some cases, of a linear-producing modern agricultural system. In contrast to traditional and local agriculture, which was based on circular sustainability models, modern agriculture currently produces tons of waste that is accumulated in landfill, creating controversial consequences, instead of being reintroduced into the production chain with a novel purpose. However, these residues from agriculture are rich in bioactive compounds, including phenolic compounds, secondary metabolites that are found naturally in plants, which show antioxidant, anti-inflammatory, cardioprotective and anticancer capacities, among others. Although there are several suitable extractive techniques for isolating these beneficial compounds from agricultural by-products, their industrial application remains without real application value at the industrial scale. The recovery of functional phenolic compounds can be achieved, obtaining products that can be reinserted into the economy as a new raw material. The re-utilization of these compounds not only represents numerous potential applications, such as food and feed additives, functional foods, nutraceuticals, cosmeceuticals, and so forth, but also represents a favourable measure for the environment, and results in the formation of value-added products. This review summarizes all of the aspects that lead to phenolic compound recovery from agricultural wastes generated in the agro-food industries, and their potential applications within a circular and sustainable bioeconomy.


Agriculture , Antioxidants/chemistry , Food Industry , Polyphenols/chemistry , Green Chemistry Technology , Humans
8.
Appl Microbiol Biotechnol ; 99(12): 5109-21, 2015 Jun.
Article En | MEDLINE | ID: mdl-25874532

Magnetotactic bacteria are a diverse group of prokaryotes that share the unique ability of biomineralizing magnetosomes, which are intracellular, membrane-bounded crystals of either magnetite (Fe3O4) or greigite (Fe3S4). Magnetosome biomineralization is mediated by a number of specific proteins, many of which are localized in the magnetosome membrane, and thus is under strict genetic control. Several studies have partially elucidated the effects of a number of these magnetosome-associated proteins in the control of the size of magnetosome magnetite crystals. However, the effect of MamC, one of the most abundant proteins in the magnetosome membrane, remains unclear. In this present study, magnetite nanoparticles were synthesized inorganically in free-drift experiments at 25 °C in the presence of different concentrations of the iron-binding recombinant proteins MamC and MamCnts (MamC without its first transmembrane segment) from the marine, magnetotactic bacterium Magnetococcus marinus strain MC-1 and three commercial proteins [α-lactalbumin (α-Lac), myoglobin (Myo), and lysozyme (Lyz)]. While no effect was observed on the size of magnetite crystals formed in the presence of the commercial proteins, biomimetic synthesis in the presence of MamC and MamCnts at concentrations of 10-60 µg/mL resulted in the production of larger and more well-developed magnetite crystals (~30-40 nm) compared to those of the control (~20-30 nm; magnetite crystals grown protein-free). Our results demonstrate that MamC plays an important role in the control of the size of magnetite crystals and could be utilized in biomimetic synthesis of magnetite nanocrystals.


Alphaproteobacteria/metabolism , Bacterial Proteins/metabolism , Ferrosoferric Oxide/metabolism , Alphaproteobacteria/chemistry , Alphaproteobacteria/genetics , Bacterial Proteins/genetics , Ferrosoferric Oxide/chemistry , Magnetosomes/chemistry , Magnetosomes/genetics , Magnetosomes/metabolism , Particle Size
9.
Arch Microbiol ; 196(7): 481-8, 2014 Jul.
Article En | MEDLINE | ID: mdl-24760293

Magnetotactic bacteria are a diverse group of prokaryotes that biomineralize intracellular magnetosomes, composed of magnetic (Fe3O4) crystals each enveloped by a lipid bilayer membrane that contains proteins not found in other parts of the cell. Although partial roles of some of these magnetosome proteins have been determined, the roles of most have not been completely elucidated, particularly in how they regulate the biomineralization process. While studies on the localization of these proteins have been focused solely on Magnetospirillum species, the goal of the present study was to determine, for the first time, the localization of the most abundant putative magnetosome membrane protein, MamC, in Magnetococcus marinus strain MC-1. MamC was expressed in Escherichia coli and purified. Monoclonal antibodies were produced against MamC and immunogold labeling TEM was used to localize MamC in thin sections of cells of M. marinus. Results show that MamC is located only in the magnetosome membrane of Mc. marinus. Based on our findings and the abundance of this protein, it seems likely that it is important in magnetosome biomineralization and might be used in controlling the characteristics of synthetic nanomagnetite.


Alphaproteobacteria/metabolism , Alphaproteobacteria/ultrastructure , Bacterial Proteins/metabolism , Magnetosomes/metabolism , Microscopy, Immunoelectron , Amino Acid Sequence , Bacterial Proteins/chemistry , Escherichia coli/metabolism , Magnetosomes/ultrastructure
10.
Chemosphere ; 68(10): 1929-36, 2007 Aug.
Article En | MEDLINE | ID: mdl-17418886

Although it has already been shown that calcareous stone can be consolidated by using a bacterially inoculated culture medium, a more user-friendly method is the in situ application of a sterile culture medium that is able to activate, among the microbial community of the stone, those bacteria with a potential for calcium carbonate precipitation. In order to test this new method for stone consolidation, non-sterilized decayed porous limestone was immersed in sterile nutritional media. Results were compared to those of the runs in which stone sterilized prior to the treatment was used. The effects of the microbial community on stone consolidation were determined by recording the evolution of the culture media chemistry. The treated stone was tested for mechanical resistance and porosity. Results demonstrate that the tested media were able to activate bacteria from the microbial community of the stone. As a consequence of the growth of these bacteria, an alkalinization occurred that resulted in calcium carbonate precipitation. The new precipitate was compatible with the substrate and consolidated the stone without pore plugging. Therefore, a good candidate to in situ consolidate decayed porous limestone is the application of a sterile culture medium with the characteristics specified in the present study.


Calcium Carbonate/chemistry , Myxococcus xanthus/metabolism , Chemical Precipitation , Construction Materials , Refuse Disposal/methods
12.
Rev Esp Enferm Apar Dig ; 76(3): 259-61, 1989 Sep.
Article Es | MEDLINE | ID: mdl-2682837

A case of gastric metastasis of renal carcinomas is described. The patient had been nephrectomized 22 months ago, and she had yet presented another in appearance solitary metastasis in lung and brain, which had been resected. This is a very unusual localization in the spread of a renal tumor, and two cases alone exist in the literature up to date which had been diagnosed during life. In despite of surgical treatment, a short free interval after nephrectomy and the tumor aggressivity, with three foci of spread at less than a year, have been the pivotal factors determining a relatively short survival of 26 months after resection of primary tumor.


Adenocarcinoma/secondary , Kidney Neoplasms , Stomach Neoplasms/secondary , Adenocarcinoma/pathology , Female , Humans , Middle Aged , Stomach Neoplasms/pathology
...