Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Talanta ; 281: 126840, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39265419

RESUMEN

A boronate-ester structure forming a pH-responsive polymer dot (Plu-PD) coated biosensor between carbonized-sp2 rich dopamine-alginate [PD(Alg)] and boronic acid-grafted Pluronic (BA-Pluronic) was developed for the electrochemical and fluorescence detection of cancer cells. The reduced fluorescence (FL) resulting from fluorescence resonance energy transfer (FRET) mediated by π-π interactions within Plu-PD was successfully reinvigorated through the specific cleavage of the boronate-ester bond, triggered by the acidic conditions prevailing in the cancer microenvironment. The anomalous variations in extracellular pH levels observed in cancer (pH ∼6.8), as opposed to the normal cellular pH range of approximately 7.4, serve as robust indicators for discerning cancer cells from their healthy counterparts. Moreover, the Plu-PD coated surface demonstrated remarkable adaptability in modulating its surface structure, concurrently exhibiting tunable electroconductivity under reduced pH conditions, thereby imparting selective responsiveness to cancer cells. The pH-modulated conductivity change was validated by a reduction in resistance from 211 ± 9.7 kΩ at pH 7.4 to 73.9 ± 9.4 kΩ and 61.5 ± 11.5 kΩ at pH 6.8 and 6.0, respectively. The controllable electrochemical characteristics were corroborated through in vitro treatment of cancer cells (HeLa, B16F10, and SNU-C2A) via LED experiments and wireless output analysis. In contrast, identical treatments yielded a limited response in normal cell line (CHO-K1). Notably, the Plu-PD coated surface can be seamlessly integrated with a wireless system to facilitate real-time monitoring of the sensing performance in the presence of cancer and normal cells, enabling rapid and accurate cancer diagnosis using a smartphone.

2.
Biosensors (Basel) ; 14(7)2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39056633

RESUMEN

A coenzyme A (CoA-SH)-responsive dual electrochemical and fluorescence-based sensor was designed utilizing an MnO2-immobilized-polymer-dot (MnO2@D-PD)-coated electrode for the sensitive detection of osteoarthritis (OA) in a peroxisomal ß-oxidation knockout model. The CoA-SH-responsive MnO2@D-PD-coated electrode interacted sensitively with CoA-SH in OA chondrocytes, triggering electroconductivity and fluorescence changes due to cleavage of the MnO2 nanosheet on the electrode. The MnO2@D-PD-coated electrode can detect CoA-SH in immature articular chondrocyte primary cells, as indicated by the significant increase in resistance in the control medium (R24h = 2.17 MΩ). This sensor also sensitively monitored the increase in resistance in chondrocyte cells in the presence of acetyl-CoA inducers, such as phytol (Phy) and sodium acetate (SA), in the medium (R24h = 2.67, 3.08 MΩ, respectively), compared to that in the control medium, demonstrating the detection efficiency of the sensor towards the increase in the CoA-SH concentration. Furthermore, fluorescence recovery was observed owing to MnO2 cleavage, particularly in the Phy- and SA-supplemented media. The transcription levels of OA-related anabolic (Acan) and catabolic factors (Adamts5) in chondrocytes also confirmed the interaction between CoA-SH and the MnO2@D-PD-coated electrode. Additionally, electrode integration with a wireless sensing system provides inline monitoring via a smartphone, which can potentially be used for rapid and sensitive OA diagnosis.


Asunto(s)
Técnicas Biosensibles , Electrodos , Compuestos de Manganeso , Osteoartritis , Polímeros , Compuestos de Manganeso/química , Polímeros/química , Óxidos/química , Técnicas Electroquímicas , Oxidación-Reducción , Condrocitos , Humanos , Fluorescencia , Peroxisomas/metabolismo , Animales
3.
Gels ; 10(7)2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-39057474

RESUMEN

An electrochemical sensor sensitive to coenzyme A (CoA) was designed using a CoA-responsive polyallylamine-manganese oxide-polymer dot nanogel coated on the electrode surface to detect various genetic models of osteoarthritis (OA). The CoA-responsive nanogel sensor responded to the abundance of CoA in OA, causing the breakage of MnO2 in the nanogel, thereby changing the electroconductivity and fluorescence of the sensor. The CoA-responsive nanogel sensor was capable of detecting CoA depending on the treatment time and distinguishing the response towards different OA genetic models that contained different levels of CoA (wild type/WT, NudT7 knockout/N7KO, and Acot12 knockout/A12KO). The WT, N7KO, and A12KO had distinct resistances, which further increased as the incubation time were changed from 12 h (R12h = 2.11, 2.40, and 2.68 MΩ, respectively) to 24 h (R24h = 2.27, 2.59, and 2.92 MΩ, respectively) compared to the sensor without treatment (Rcontrol = 1.63 MΩ). To simplify its application, the nanogel sensor was combined with a wireless monitoring device to allow the sensing data to be directly transmitted to a smartphone. Furthermore, OA-indicated anabolic (Acan) and catabolic (Adamts5) factor transcription levels in chondrocytes provided evidence regarding CoA and nanogel interactions. Thus, this sensor offers potential usage in simple and sensitive OA diagnostics.

4.
Int J Nanomedicine ; 19: 1683-1697, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38445226

RESUMEN

Introduction: Cartilage regeneration is a challenging issue due to poor regenerative properties of tissues. Electrospun nanofibers hold enormous potentials for treatments of cartilage defects. However, nanofibrous materials used for the treatment of cartilage defects often require physical and/or chemical modifications to promote the adhesion, proliferation, and differentiation of cells. Thus, it is highly desirable to improve their surface properties with functionality. We aim to design hydrophilic, adhesive, and compound K-loaded nanofibers for treatments of cartilage defects. Methods: Hydrophilic and adhesive compound K-containing polycaprolactone nanofibers (CK/PCL NFs) were prepared by coatings of gallic acid-conjugated chitosan (CHI-GA). Therapeutic effects of CHI-GA/CK/PCL NFs were assessed by the expression level of genes involved in the cartilage matrix degradation, inflammatory response, and lipid accumulations in the chondrocytes. In addition, Cartilage damage was evaluated by safranin O staining and immunohistochemistry of interleukin-1ß (IL-1ß) using OA animal models. To explore the pathway associated with therapeutic effects of CHI-GA/CK/PCL NFs, cell adhesion, phalloidin staining, and the expression level of integrins and peroxisome proliferator-activated receptor (PPARs) were evaluated. Results: CHI-GA-coated side of the PCL NFs showed hydrophilic and adhesive properties, whereas the unmodified opposite side remained hydrophobic. The expression levels of genes involved in the degradation of the cartilage matrix, inflammation, and lipogenesis were decreased in CHI-GA/CK/PCL NFs owing to the release of CK. In vivo implantation of CHI-GA/CK/PCL NFs into the cartilage reduced cartilage degradation induced by destabilization of the medial meniscus (DMM) surgery. Furthermore, the accumulation of lipid deposition and expression levels of IL-1ß was reduced through the upregulation of PPAR. Conclusion: CHI-GA/CK/PCL NFs were effective in the treatments of cartilage defects by inhibiting the expression levels of genes involved in cartilage degradation, inflammation, and lipogenesis as well as reducing lipid accumulation and the expression level of IL-1ß via increasing PPAR.


Asunto(s)
Quitosano , Ginsenósidos , Nanofibras , Animales , Receptores Activados del Proliferador del Peroxisoma , Cartílago , Inflamación/tratamiento farmacológico , Regeneración , Lípidos
5.
Curr Protoc ; 4(3): e1005, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38465381

RESUMEN

Embryonic limb bud-derived micromass cultures are valuable tools for investigating cartilage development, tissue engineering, and therapeutic strategies for cartilage-related disorders. This collection of fine-tuned protocols used in our laboratories outlines step-by-step procedures for the isolation, expansion, and differentiation of primary mouse limb bud cells into chondrogenic micromass cultures. Key aspects covered in these protocols include synchronized fertilization of mice (Basic Protocol 1), tissue dissection, cell isolation, micromass formation, and culture optimization parameters, such as cell density and medium composition (Basic Protocol 2). We describe techniques for characterizing the chondrogenic differentiation process by histological analysis (Basic Protocol 3). The protocols also address common challenges encountered during the process and provide troubleshooting strategies. This fine-tuned comprehensive protocol serves as a valuable resource for scientists working in the fields of developmental biology, cartilage tissue engineering, and regenerative medicine, offering an updated methodology for the study of efficient chondrogenic differentiation and cartilage tissue regeneration. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Synchronized fertilization of mice Basic Protocol 2: Micromass culture of murine embryonic limb bud-derived cells Basic Protocol 3: Qualitative assessment of cartilage matrix production using Alcian blue staining.


Asunto(s)
Cartílago , Condrogénesis , Animales , Ratones , Células Cultivadas , Diferenciación Celular , Mamíferos
6.
Theranostics ; 13(15): 5207-5222, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37908734

RESUMEN

Rationale: One of the hallmarks of osteoarthritis (OA), the most common degenerative joint disease, is increased numbers of senescent chondrocytes. Targeting senescent chondrocytes or signaling mechanisms leading to senescence could be a promising new therapeutic approach for OA treatment. However, understanding the key targets and links between chondrocyte senescence and OA remains unclear. Methods: Senescent chondrocytes were identified from Nudt7-/-, Acot12-/-, double-knockout mice lacking Acot12 and Nudt7 (dKO) and applied to microarray. The presence of forkhead transcription factor M1 (FOXM1) was detected in aged, dKO, and destabilization of the medial meniscus (DMM) cartilages and articular chondrocytes, and the effect of FoxM1 overexpression and acetyl-CoA treatment on cartilage homeostasis was examined using immunohistochemistry, quantitative real-time PCR (qRT-PCR), cell apoptosis and proliferation assay, and safranin O staining. Delivery of Rho@PAA-MnO2 (MnO2 nanosheet) or heparin-ACBP/COS-GA-siFoxM1 (ACBP-siFoxM1) nanoparticles into DMM cartilage was performed. Results: Here, we propose the specific capture of acetyl-CoA with the delivery of (FoxM1 siRNA (siFoxM1) to prevent cartilage degradation by inhibiting the axis of chondrocyte senescence. dKO stimulate chondrocyte senescence via the upregulation of FoxM1 and contribute to severe cartilage breakdown. We found that the accumulation of acetyl-CoA in the dKO mice may be responsible for the upregulation of FoxM1 during OA pathogenesis. Moreover, scavenging reactive oxygen species (ROS) induced by chondrocyte senescence via the implantation of MnO2 nanosheets or delivery of siFoxM1 functionalized with acetyl-CoA binding protein (ACBP) to capture acetyl-CoA using an injectable bioactive nanoparticle (siFoxM1-ACBP-NP) significantly suppressed DMM-induced cartilage destruction. Conclusion: We found that the loss of Acot12 and Nudt7 stimulates chondrocyte senescence via the upregulation of FoxM1 and accumulation of acetyl-CoA, and the application of siFoxM1-ACBP-NP is a potential therapeutic strategy for OA treatment.


Asunto(s)
Condrocitos , Osteoartritis , Animales , Ratones , Acetilcoenzima A/metabolismo , Senescencia Celular/fisiología , Condrocitos/metabolismo , Compuestos de Manganeso/farmacología , Ratones Noqueados , Osteoartritis/metabolismo , Óxidos/farmacología , Hidrolasas Nudix
7.
Biomimetics (Basel) ; 8(6)2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37887600

RESUMEN

Hair dyeing has become a prevalent lifestyle trend, especially within the fashion industry. However, it possesses disadvantages, such as containing carcinogenic and toxic materials. In this study, we developed a biocompatible hair-dyeing technology using a shampoo with a dark polyphenol complex (DPC), referred to as S-DPC. The DPC was formed from a mixture of gallic acid and [1,1'-biphenyl]-2,2',4,4',5,5'-hexol and used to enhance both the stability of the hair coating and its ability to scavenge reactive oxygen species (ROS). Colloidal DPC particles play a pivotal role in the coating process of various hair dyes, ensuring the uniform coloring of human hair through intermolecular interactions such as hydrogen bonding. Owing to the effect of a polyphenol complex on hair coating, we observed improved antistatic performance and enhanced mechanical strength, resulting in a substantial increase in elongation at the breaking point from 33.74% to 48.85%. The multicolor S-DPC exhibited antioxidant properties, as indicated by its ROS-scavenging ability, including 2,2-diphenyl-1-picrylhydrazyl inhibition (87-89%), superoxide radical scavenging (84-87%), and hydroxyl radical scavenging (95-98%). Moreover, the in vitro analysis of the DPC revealed nearly 100% cell viability in live and dead assays, highlighting the remarkable biocompatibility of the DPC. Therefore, considering its effectiveness and safety, this biomaterial has considerable potential for applications in hair dyeing.

8.
Regen Biomater ; 10: rbad077, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37750082

RESUMEN

Biomaterial-based drug delivery systems have been developed to expedite cartilage regeneration; however, challenges related to drug recovery, validation, and efficient drug delivery remain. For instance, compound K (CK) is a major metabolite of ginsenosides that is known to protect against joint degeneration by inhibiting the production of inflammatory cytokines and the activation of immune cells. However, its effects on cartilage degradation and tissue regeneration remain unclear. Additionally, tissue-adhesive drug delivery depots that stably adhere to cartilage defects are required for CK delivery. In this study, CK-loaded adhesive patches were reported to seal cartilage defects and deliver CK to defect sites, preventing cartilage degradation and accelerating cartilage tissue regeneration. Adhesive patches are stable and suitable for application in surgical procedures under physiological conditions and show excellent adhesiveness to cartilage surfaces. In addition, there were no significant differences in the adhesive polymeric networks before and after CK loading. CK-loaded hydrocaffeic acid-conjugated chitosan patches significantly inhibited the stimulation of cartilage-degrading enzymes and apoptosis in osteoarthritic cartilage by releasing CK in cartilage defects. Additionally, the NFkB signaling pathway of released CK from the adhesive patches in the treatment of osteoarthritis is revealed. Thus, the CK-loaded adhesive patches are expected to significantly contribute to cartilage regeneration.

9.
Acta Biomater ; 171: 406-416, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37739252

RESUMEN

A visible light- and reactive oxygen species (ROS)-responsive pressure/strain sensor based on carbon dot (CD)-loaded conductive hydrogel was developed for detecting high-fat diet (HFD) and preventing the risk of non-alcoholic fatty liver disease. The designed nanoparticle consisted of a diselenide polymer dot (dsPD) loaded with a visible light-responsive CD to form dsPD@CD (DSCD). The influence of visible light irradiation and ROS on DSCD facilitated the electron transport, enhancing the conductivity of DSCD-embedded hydrogel (DSCD hydrogel) from 1.3 to 35.9 mS/m. Alternatively, the tensile modulus of the DSCD hydrogel enhanced to 223 % after light-induced ROS treatment, which simultaneously impacted the capacitive response (120 %). The hydrogel implantation into inguinal white adipose tissue of HFD mice showed 82 % higher conductivity and 83 % enhanced pressure sensing response to HFD-generated high ROS levels compared with the normal diet-fed mice. Additionally, the ROS scavenging activity of DSCD hydrogel was confirmed by the downregulation of ROS-responsive genes, such as Sod2, Nrf2, and catalase (Cat) in murine primary hepatocytes isolated from fatty liver-induced mice. In addition, in vivo animal studies also confirmed the suppression of hepatic lipogenesis, as shown by decreased Pparγ and Fasn expression and hypertrophy of adipocytes in HFD mice. The distinguishable real-time wireless resistance response observed with pressure sensing indicates the potential application of the device for monitoring the risk of non-alcoholic fatty liver disease. STATEMENT OF SIGNIFICANCE: A visible-light-induced ROS-responsive carbon dot-loaded conductive hydrogel was developed for the detection of HFD-induced alterations in ROS levels by evaluating the conductivity and electrochemical responses with applied pressure/strain. The implanted hydrogel facilitates the recovery of the inflated adipocytes induced by NAFLD, which reduces fat accumulation in the liver, preventing the risk of NAFLD. Real-time detection based on the resistance response during local compression of the hydrogel is possibly performed utilizing a wireless sensing device, demonstrating the ease of NAFLD monitoring.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Animales , Ratones , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Hidrogeles/farmacología , Hidrogeles/metabolismo , Hígado/metabolismo , Tejido Adiposo/metabolismo , Carbono , Ratones Endogámicos C57BL
10.
Nucleic Acids Res ; 51(8): 3590-3617, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-36987858

RESUMEN

Chondrogenesis is a multistep process, in which cartilage progenitor cells generate a tissue with distinct structural and functional properties. Although several approaches to cartilage regeneration rely on the differentiation of implanted progenitor cells, the temporal transcriptomic landscape of in vitro chondrogenesis in different models has not been reported. Using RNA sequencing, we examined differences in gene expression patterns during cartilage formation in micromass cultures of embryonic limb bud-derived progenitors. Principal component and trajectory analyses revealed a progressively different and distinct transcriptome during chondrogenesis. Differentially expressed genes (DEGs), based on pairwise comparisons of samples from consecutive days were classified into clusters and analysed. We confirmed the involvement of the top DEGs in chondrogenic differentiation using pathway analysis and identified several chondrogenesis-associated transcription factors and collagen subtypes that were not previously linked to cartilage formation. Transient gene silencing of ATOH8 or EBF1 on day 0 attenuated chondrogenesis by deregulating the expression of key osteochondrogenic marker genes in micromass cultures. These results provide detailed insight into the molecular mechanism of chondrogenesis in primary micromass cultures and present a comprehensive dataset of the temporal transcriptomic landscape of chondrogenesis, which may serve as a platform for new molecular approaches in cartilage tissue engineering.


Asunto(s)
Condrogénesis , Transcriptoma , Condrogénesis/genética , Cartílago/metabolismo , Diferenciación Celular/genética , Células Madre/metabolismo , Células Cultivadas , Condrocitos/metabolismo
11.
iScience ; 25(10): 105135, 2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36185359

RESUMEN

Here, we found that heterozygous null of peroxisomal Nudt7 (Nudt7 +/- ) induced the typical NAFLD features, i.e. increased levels of hepatic triglyceride (TG) and fatty acid (FA), infiltration of inflammatory cells, impaired glucose tolerance and insulin sensitivity, and stimulation of lipolysis from adipose tissue. Particularly, in Nudt7 +/- hepatocytes, de novo lipogenesis (DNL) was significantly increased. Ingenuity pathway analysis (IPA) and KEGG pathway analysis of RNA sequencing data suggested the activation of PPAR signaling in the liver of Nudt7 +/- mice. Moreover, accumulation of palmitic acid in Nudt7 +/- hepatocyte increased the level of H3K4me3 on the promoters of PPARγ resulting in the activation of PPARγ and induced the DNL in the hepatocytes of Nudt7 +/- mice. Moreover, we found that liraglutide significantly reduced typical NAFLD features induced by NUDT7 deficiency. Our data suggest that dysregulation of peroxisomal NUDT7 is responsible for upregulation of hepatic DNL by accumulation of palmitic acid and PPARγ activation.

12.
Int J Mol Sci ; 23(6)2022 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-35328513

RESUMEN

Pre-mRNA processing factor 4B (PRP4) promotes pre-mRNA splicing and signal transduction. Recent studies have shown that PRP4 modulates the assembly of actin cytoskeleton in cancer cells and induces epithelial-mesenchymal transition (EMT) and drug resistance. PRP4 displays kinase domain-like cyclin-dependent kinases and mitogen-activated protein kinases, making it capable of phosphorylating p53 and other target proteins. In the current study, we report that PRP4 induces drug resistance and EMT via direct binding to the p53 protein, inducing its phosphorylation. Moreover, PRP4 overexpression activates the transcription of miR-210 in a hypoxia-inducible factor 1α (HIF-1α)-dependent manner, which activates p53. The involvement of miR-210 in the activation of p53 was confirmed by utilizing si-miR210. si-miR210 blocked the PRP4-activated cell survival pathways and reversed the PRP4-induced EMT phenotype. Moreover, we used deferoxamine as a hypoxia-mimetic agent, and si-HIF to silence HIF-1α. This procedure demonstrated that PRP4-induced EMT and drug resistance emerged in response to consecutive activation of HIF-1α, miR-210, and p53 by PRP4 overexpression. Collectively, our findings suggest that the PRP4 contributes to EMT and drug resistance induction via direct interactions with p53 and actions that promote upregulation of HIF-1α and miR-210. We conclude that PRP4 is an essential factor promoting cancer development and progression. Specific PRP4 inhibition could benefit patients with colon cancer.


Asunto(s)
Neoplasias del Colon , MicroARNs , Línea Celular Tumoral , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/genética , Resistencia a Medicamentos , Transición Epitelial-Mesenquimal/genética , Humanos , Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Proteínas Serina-Treonina Quinasas , Precursores del ARN/metabolismo , Ribonucleoproteína Nuclear Pequeña U4-U6 , Proteína p53 Supresora de Tumor/genética
13.
Nat Commun ; 13(1): 3, 2022 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-34987154

RESUMEN

Here, in Ppara-/- mice, we found that an increased DNL stimulated the cartilage degradation and identified ACOT12 as a key regulatory factor. Suppressed level of ACOT12 was observed in cartilages of OA patient and OA-induced animal. To determine the role and association of ACOT12 in the OA pathogenesis, we generated Acot12 knockout (KO) (Acot12-/-) mice using RNA-guided endonuclease. Acot12-/- mice displayed the severe cartilage degradation with the stimulation of matrix MMPs and chondrocyte apoptosis through the accumulation of acetyl CoA. Delivery of acetyl CoA-conjugated chitosan complex into cartilage stimulated DNL and cartilage degradation. Moreover, restoration of ACOT12 into human OA chondrocytes and OA-induced mouse cartilage effectively rescued the pathophysiological features of OA by regulating DNL. Taken together, our study suggested ACOT12 as a novel regulatory factor in maintaining cartilage homeostasis and targeting ACOT12 could contribute to developing a new therapeutic strategy for OA.


Asunto(s)
Cartílago Articular/metabolismo , Lipogénesis/fisiología , PPAR alfa/metabolismo , Tioléster Hidrolasas/metabolismo , Acetilcoenzima A/metabolismo , Animales , Apoptosis , Condrocitos/metabolismo , Humanos , Lípidos/biosíntesis , Metaloproteinasas de la Matriz/metabolismo , Ratones , Osteoartritis/metabolismo , Cultivo Primario de Células
14.
Cells ; 10(7)2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34360007

RESUMEN

Since mitochondria are suggested to be important regulators in maintaining cartilage homeostasis, turnover of mitochondria through mitochondrial biogenesis and mitochondrial degradation may play an important role in the pathogenesis of osteoarthritis (OA). Here, we found that mitochondrial dysfunction is closely associated with OA pathogenesis and identified the peroxisome proliferator-activated receptor-gamma co-activator 1-alpha (PGC1α) as a potent regulator. The expression level of PGC1α was significantly decreased under OA conditions, and knockdown of PGC1α dramatically elevated the cartilage degradation by upregulating cartilage degrading enzymes and apoptotic cell death. Interestingly, the knockdown of PGC1α activated the parkin RBR E3 ubiquitin protein ligase (PRKN)-independent selective mitochondria autophagy (mitophagy) pathway through the upregulation of BCL2 and adenovirus E1B 19-kDa-interacting protein 3 (BNIP3). The overexpression of BNIP3 stimulated mitophagy and cartilage degradation by upregulating cartilage-degrading enzymes and chondrocyte death. We identified microRNA (miR)-126-5p as an upstream regulator for PGC1α and confirmed the direct binding between miR-126-5p and 3' untranslated region (UTR) of PGC1α. An in vivo OA mouse model induced by the destabilization of medial meniscus (DMM) surgery, and the delivery of antago-miR-126 via intra-articular injection significantly decreased cartilage degradation. In sum, the loss of PGC1α in chondrocytes due to upregulation of miR-126-5p during OA pathogenesis resulted in the activation of PRKN-independent mitophagy through the upregulation of BNIP3 and stimulated cartilage degradation and apoptotic death of chondrocytes. Therefore, the regulation of PGC1α:BNIP3 mitophagy axis could be of therapeutic benefit to cartilage-degrading diseases.


Asunto(s)
Cartílago Articular/metabolismo , Proteínas de la Membrana/genética , MicroARNs/genética , Proteínas Mitocondriales/genética , Mitofagia/genética , Osteoartritis/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Animales , Antagomirs/genética , Antagomirs/metabolismo , Artroplastia de Reemplazo de Rodilla/métodos , Secuencia de Bases , Cartílago Articular/patología , Condrocitos/metabolismo , Condrocitos/patología , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Humanos , Proteínas de la Membrana/metabolismo , Meniscos Tibiales/metabolismo , Meniscos Tibiales/patología , Ratones , Ratones Endogámicos C57BL , MicroARNs/antagonistas & inhibidores , MicroARNs/metabolismo , Mitocondrias/metabolismo , Mitocondrias/patología , Proteínas Mitocondriales/metabolismo , Osteoartritis/metabolismo , Osteoartritis/patología , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/antagonistas & inhibidores , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Cultivo Primario de Células , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
15.
Exp Mol Med ; 53(7): 1159-1169, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34285335

RESUMEN

In this study, we hypothesized that deregulation in the maintenance of the pool of coenzyme A (CoA) may play a crucial role in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). Specific deletion of Acot12 (Acot12-/-), the major acyl-CoA thioesterase, induced the accumulation of acetyl-CoA and resulted in the stimulation of de novo lipogenesis (DNL) and cholesterol biosynthesis in the liver. KEGG pathway analysis suggested PPARα signaling as the most significantly enriched pathway in Acot12-/- livers. Surprisingly, the exposure of Acot12-/- hepatocytes to fenofibrate significantly increased the accumulation of acetyl-CoA and resulted in the stimulation of cholesterol biosynthesis and DNL. Interaction analysis, including proximity-dependent biotin identification (BioID) analysis, suggested that ACOT12 may directly interact with vacuolar protein sorting-associated protein 33A (VPS33A) and play a role in vesicle-mediated cholesterol trafficking and the process of lysosomal degradation of cholesterol in hepatocytes. In summary, in this study, we found that ACOT12 deficiency is responsible for the pathogenesis of NAFLD through the accumulation of acetyl-CoA and the stimulation of DNL and cholesterol via activation of PPARα and inhibition of cholesterol trafficking.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico/metabolismo , Tioléster Hidrolasas/metabolismo , Acetilcoenzima A/metabolismo , Animales , Colesterol/biosíntesis , Colesterol/genética , Dieta Alta en Grasa/efectos adversos , Femenino , Humanos , Lípidos/biosíntesis , Lípidos/genética , Lipogénesis/fisiología , Lipólisis/fisiología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Obesos , Enfermedad del Hígado Graso no Alcohólico/genética , PPAR alfa/genética , PPAR alfa/metabolismo , Embarazo , Tioléster Hidrolasas/genética
16.
Cancers (Basel) ; 12(3)2020 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-32131398

RESUMEN

Studies have suggested that dysregulation of peroxisomal lipid metabolism might play an important role in colorectal cancer (CRC) development. Here, we found that KrasG12D-driven CRC tumors demonstrate dysfunctional peroxisomal b-oxidation and identified Nudt7 (peroxisomal coenzyme A diphosphatase NUDT7) as one of responsible peroxisomal genes. In KrasG12D-driven CRC tumors, the expression level of Nudt7 was significantly decreased. Treatment of azoxymethane/dextran sulfate sodium (AOM/DSS) into Nudt7 knockout (Nudt7-/-) mice significantly induced lipid accumulation and the expression levels of CRC-related genes whereas xenografting of Nudt7-overexpressed LS-174T cells into mice significantly reduced lipid accumulation and the expression levels of CRC-related genes. Ingenuity pathway analysis of microarray using the colon of Nudt7-/- and Nudt7+/+ mice treated with AOM/DSS suggested Wnt signaling as one of activated signaling pathways in Nudt7-/- colons. Upregulated levels of ß-catenin were observed in the colons of KrasG12D and AOM/DSS-treated Nudt7-/- mice and downstream targets of ß-catenin such as Myc, Ccdn1, and Nos2, were also significantly increased in the colon of Nudt7-/- mice. We observed an increased level of palmitic acid in the colon of Nudt7-/- mice and attachment of palmitic acid-conjugated chitosan patch into the colon of mice induced the expression levels of b-catenin and CRC-related genes. Overall, our data reveal a novel role for peroxisomal NUDT7 in KrasG12D-driven CRC development.

17.
J Cell Physiol ; 235(5): 4982, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32048737
18.
Exp Mol Med ; 52(1): 176-177, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31956267

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

19.
Exp Mol Med ; 52(1): 178-179, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31956265

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA