Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 13(8)2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38674525

RESUMEN

In rice, there is a lack of comprehensive research on the functional aspects of the members of the serine hydroxymethyltransferase (SHMT) gene family. This study provides a comprehensive investigation of the SHMT gene family, covering phylogeny, gene structure, promoter analysis, expression analysis, subcellular localization, and protein interaction. Remarkably, we discovered a specific gene loss event occurred in the chloroplast-localized group IIa SHMTs in monocotyledons. However, OsSHMT3, which originally classified within cytoplasmic-localized group Ib, was found to be situated within chloroplasts in rice protoplasts. All five OsSHMTs are capable of forming homodimers, with OsSHMT3 being the only one able to form dimers with other OsSHMTs, except for OsSHMT1. It is proposed that OsSHMT3 functions as a mobile protein, collaborating with other OsSHMT proteins. Furthermore, the results of cis-acting element prediction and expression analysis suggested that members of the OsSHMT family could be involved in diverse stress responses and hormone regulation. Our study aims to provide novel insights for the future exploration of SHMTs.

2.
J Agric Food Chem ; 71(12): 4901-4914, 2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-36938622

RESUMEN

Pecan (Carya illinoinensis) is a popular tree nut. Its fruit development undergoes slow growth, rapid expansion, core hardening, and kernel maturation stages. However, little is known about how pecan initiates fruit development and enlargement after pollination. In this study, we performed the first large-scale identification of potential phosphorylation sites and proteins at early development of pecan fruit by a label-free phosphoproteomic quantification technique. A total of 2155 phosphosites were identified from 1953 phosphopeptides covering 1311 phosphoproteins in unpollinated pistils and fruits at 5 and 9 weeks after pollination. Of these, 699 nonredundant phosphoproteins were differentially phosphorylated (DP). Furthermore, the phosphorylation intensity of DP proteins in brassinolide (BR) and auxin signaling were analyzed, and the function of CiBZR1 was investigated. Ectopic expression of CiBZR1 resulted in BR response phenotypes with curled leaves and fruit, while enlarged seed size in Arabidopsis. Subcellular localization and transcriptional activation activity assay demonstrated that CiBZR1 distributed in both the nucleus and cytoplasm with transcriptional activity. When two phosphosites mutated, CiBZR1S201P,S205G moved to the nucleus completely, while the transcriptional activity remained unchanged. Taken together, our data reveal extensive phosphoproteins and lay a foundation to comprehensively dissect the potential post-translational regulation mechanism of early development of pecan fruit.


Asunto(s)
Carya , Frutas , Frutas/genética , Nueces , Semillas , Fenotipo
3.
Front Plant Sci ; 13: 1023938, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36275551

RESUMEN

Biomass energy is an essential component of the agriculture economy and represents an important and particularly significant renewable energy source in the fight against fossil fuel depletion and global warming. The recognition that many plants naturally synthesize hydrocarbons makes these oil plants indispensable resources for biomass energy, and the advancement of next-generation sequencing technology in recent years has now made available mountains of data on plants that synthesize oil. We have utilized a combination of bioinformatic protocols to acquire key information from this massive amount of genomic data and to assemble it into an oil plant genomic information repository, built through website technology, including Django, Bootstrap, and echarts, to create the Genomic Information Repository for Oil Plants (GROP) portal (http://grop.site/) for genomics research on oil plants. The current version of GROP integrates the coding sequences, protein sequences, genome structure, functional annotation information, and other information from 18 species, 22 genome assemblies, and 46 transcriptomes. GROP also provides BLAST, genome browser, functional enrichment, and search tools. The integration of the massive amounts of oil plant genomic data with key bioinformatics tools in a database with a user-friendly interface allows GROP to serve as a central information repository to facilitate studies on oil plants by researchers worldwide.

4.
Front Genet ; 13: 910488, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35646060

RESUMEN

Hickory, an endemic woody oil and fruit tree species in China, is of great economic value. However, hickory has a long juvenile period and an inconsistent flowering of males and females, thus influencing the bearing rates and further limiting fruits yield. Currently, it is reported that long noncoding RNAs (lncRNAs) play critical regulatory roles in biological processes. However, the role of lncRNAs in the development of hickory female flowers remains unclear. In this study, a total of 6,862 putative lncRNAs were identified from the female flower transcriptomes in three different growth stages of hickory. We proposed that lncRNAs might play an important role in phytohormone signaling processes for flower formation, especially in the abscisic acid and jasmonic acid pathways, according to the results of our Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment. Moreover, we predicted the interactions among four microRNAs (miRNAs), three lncRNAs, and four genes. We proposed that facing the changing environment, LNC_002115 competes with PHOSPHATE2 (PHO2) for the binding sites on cca-miR399f, and protects PHO2 from suppression. In addition, cis-acting LNC_002115 regulates the expression of the SHORT VEGETATIVE PHASE (SVP) by influencing ABRE-binding factor (ABF). In brief, LNC_002115 regulates hickory female floral development by impacting both PHO2 and SVP. This study was the first to identify lncRNAs involved in hickory female floral development, and provided new insight to elucidate how lncRNAs and their targets play a role in female floral development in hickory, thus unfolding the opportunities for functional characterization of blossom-related lncRNAs in further studies.

5.
Front Plant Sci ; 13: 1000489, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36684801

RESUMEN

Flower bud differentiation represents a crucial transition from vegetative growth to reproductive development. Carya cathayensis (hickory) is an important economic species in China, with a long juvenile period that hinders its commercial development. In recent years, circular RNAs (circRNAs) have been widely studied and identified as sponges for miRNA regulation of mRNA expression. However, little is known regarding the role of circRNAs in flower buds. In this study, we sequenced circRNAs at three developmental stages (undifferentiated, differentiating, and fully differentiated) in both female and male buds. A total of 6,931 circRNAs were identified in the three developmental stages and 4,449 and 2,209 circRNAs were differentially expressed in female and male buds, respectively. Gene ontology demonstrated that many circRNA host genes participated in various processes, for example, cellular and intracellular pH regulation. Function annotation identified 46 differentially expressed circRNAs involved in flowering regulation, with 28 circRNAs found only in female buds, 4 found only in male buds, and 11 found in both female and male buds. A circRNA-miRNA-mRNA network was predicted based on 13 flowering-related circRNAs and their seven putative interacting miRNAs to describe the regulatory mechanism. Our preliminary results demonstrated a potential involvement of circRNA in bud differentiation. They provided a preliminary theoretical basis for how circRNA might participate in flower development in hickory, perhaps in woody plants.

6.
Int J Mol Sci ; 22(24)2021 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-34948359

RESUMEN

The AP2 transcriptional factors (TFs) belong to the APETALA2/ ethylene-responsive factor (AP2/ERF) superfamily and regulate various biological processes of plant growth and development, as well as response to biotic and abiotic stresses. However, genome-wide research on the AP2 subfamily TFs in the pecan (Carya illinoinensis) is rarely reported. In this paper, we identify 30 AP2 subfamily genes from pecans through a genome-wide search, and they were unevenly distributed on the pecan chromosomes. Then, a phylogenetic tree, gene structure and conserved motifs were further analyzed. The 30 AP2 genes were divided into euAP2, euANT and basalANT three clades. Moreover, the cis-acting elements analysis showed many light responsive elements, plant hormone-responsive elements and abiotic stress responsive elements are found in CiAP2 promoters. Furthermore, a qPCR analysis showed that genes clustered together usually shared similar expression patterns in euAP2 and basalANT clades, while the expression pattern in the euANT clade varied greatly. In developing pecan fruits, CiAP2-5, CiANT1 and CiANT2 shared similar expression patterns, and their expression levels decreased with fruit development. CiANT5 displayed the highest expression levels in developing fruits. The subcellular localization and transcriptional activation activity assay demonstrated that CiANT5 is located in the nucleus and functions as a transcription factor with transcriptional activation activity. These results help to comprehensively understand the pecan AP2 subfamily TFs and lay the foundation for further functional research on pecan AP2 family genes.


Asunto(s)
Carya/genética , Proteínas de Plantas/genética , Factor de Transcripción AP-2/genética , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Familia de Multigenes , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...