Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Neural Inf Process Syst ; 35: 5299-5314, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-38414814

RESUMEN

There are multiple scales of abstraction from which we can describe the same image, depending on whether we are focusing on fine-grained details or a more global attribute of the image. In brain mapping, learning to automatically parse images to build representations of both small-scale features (e.g., the presence of cells or blood vessels) and global properties of an image (e.g., which brain region the image comes from) is a crucial and open challenge. However, most existing datasets and benchmarks for neuroanatomy consider only a single downstream task at a time. To bridge this gap, we introduce a new dataset, annotations, and multiple downstream tasks that provide diverse ways to readout information about brain structure and architecture from the same image. Our multi-task neuroimaging benchmark (MTNeuro) is built on volumetric, micrometer-resolution X-ray microtomography images spanning a large thalamocortical section of mouse brain, encompassing multiple cortical and subcortical regions. We generated a number of different prediction challenges and evaluated several supervised and self-supervised models for brain-region prediction and pixel-level semantic segmentation of microstructures. Our experiments not only highlight the rich heterogeneity of this dataset, but also provide insights into how self-supervised approaches can be used to learn representations that capture multiple attributes of a single image and perform well on a variety of downstream tasks. Datasets, code, and pre-trained baseline models are provided at: https://mtneuro.github.io/.

2.
Sci Rep ; 10(1): 8383, 2020 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-32433471

RESUMEN

Synthetic biology is advancing into a new phase where real-world applications are emphasized. There is hence an urgent need for mathematical modeling that can quantitatively describe the behaviors of genetic devices in natural, fluctuating environments. We utilize an integrative circuit-host modeling framework to examine the dynamics of a genetic switch and its host cell in varying environments. For both steady-state and transient cases, we find increasing nutrient reduces the bistability region of the phase space and eventually drives the switch from bistability to monostability. In response, cellular growth and proteome partitioning experience the same transition. Antibiotic perturbations cause the similar circuit and host responses as nutrient variations. However, one difference is the trend of growth rate, which augments with nutrient but declines with antibiotic levels. The framework provides a mechanistic scheme to account for both the dynamic and static characteristics of the circuit-host system upon environmental perturbations, underscoring the intimacy of gene circuits and their hosts and elucidating the complexity of circuit behaviors arising from environmental variations.


Asunto(s)
Biología Sintética/métodos , Redes Reguladoras de Genes/fisiología , Genes de Cambio/genética , Modelos Genéticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...