Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 93
1.
Ther Adv Drug Saf ; 15: 20420986241244593, 2024.
Article En | MEDLINE | ID: mdl-38646425

Purpose: This study was designed to investigate the prophylactic effect of oral olanzapine in postoperative nausea and vomiting after gynecologic laparoscopic surgery. Methods: ASA I-II, aged 18-75 years, planned to undergo gynecologic laparoscopic surgery with general anesthesia in adult female patients. Using the randomized numbers table, the patients were placed in two groups. Oral olanzapine 5 mg or placebo was given 1 h before anesthesia. All patients received standard antiemetic prophylaxis with dexamethasone and granisetron. The primary outcome was nausea and/or vomiting in the 24 h after the postoperative. Results: A total of 250 patients were randomized, and 241 were analyzed. The primary outcome occurred in 10 of 120 patients (8.3%) in the olanzapine group and 23 of 121 patients (19.2%) in the placebo group (p = 0.014). According to Kaplan-Meier analysis, the probabilities of nausea and/or vomiting in the 24 h after the postoperative in the olanzapine group were lower than in the placebo group (log-rank p = 0.014). In a multivariate Cox analysis, the variables of use of olanzapine [hazard ratio (HR): 0.35, 95% confidence interval (CI): 0.16-0.79; p = 0.012] and use of vasoactive drugs (HR: 2.48, 95% CI: 1.07-5.75; p = 0.034) were independently associated with nausea and/or vomiting in the 24 h after the postoperative. Conclusion: Our data suggest that olanzapine relative to placebo decreased the risk of nausea and/or vomiting in the 24 h after gynecologic laparoscopic surgery. Trial registration: The trial was registered prior to patient enrollment at The Chinese Clinical Trial Registry (https://www.chictr.org.cn/showproj.html?proj=166900, link to registry page, Principal investigator: Nanjin Chen, Date of registration: 25 April 2022).


Preventing nausea and vomiting after laparoscopic gynecological surgery: the benefits of using olanzapine Why was this study done? Despite the use of antiemetics, postoperative nausea and vomiting remain prevalent. Furthermore, patients who undergo gynecological laparoscopic surgery are at an increased risk. Therefore, this study investigated whether oral Olanzapine could reduce the incidence of nausea and vomiting after gynaecological Laparoscopy? What did the researchers do? The research team examined patients who underwent gynecological laparoscopic surgery under general anesthesia. They observed the occurrence of nausea and vomiting within 24 hours after surgery in patients who either received or did not receive Olanzapine treatment. The goal was to assess the effectiveness of Olanzapine in reducing postoperative nausea and vomiting. What did the researchers find? The addition of Olanzapine, when combined with granisetron and dexamethasone, resulted in a decreased risk of nausea and/or vomiting within the 24 hours following gynecologic laparoscopic surgery, as compared to the placebo. Administering oral Olanzapine at a dosage of 5 mg reduced the incidence of nausea and vomiting after gynecological laparoscopy from 19.2% to 8.3%. What do the findings mean? This study has identified a safe and effective medication for preventing postoperative nausea and vomiting. Implementing Olanzapine as a preventive measure can significantly reduce the incidence of nausea and vomiting following surgery, thereby enhancing the overall medical experience for patients.

3.
Clin Nutr ; 43(6): 1372-1383, 2024 Apr 20.
Article En | MEDLINE | ID: mdl-38678822

BACKGROUND & AIMS: Sepsis-induced disseminated intravascular coagulation (DIC) is characterised by abnormal blood clotting resulting from severe infection, contributing to organ dysfunction in sepsis. Resolvin D1 (RvD1) is an endogenous lipid mediator, synthesised from the omega-3 polyunsaturated fatty acid (PUFA) docosahexaenoic acid (DHA) through enzymatic processes involving 15-LOX and 5-LOX. RvD1 is recognised for its protective properties against various inflammatory conditions. This study aims to investigate its potential to modulate coagulation dysfunction in sepsis and to evaluate coagulation disorders in septic patients. METHODS: Sepsis models were established by intraperitoneal injection LPS (20 mg/kg) or cecal ligation and puncture (CLP) followed by injection of RvD1 (10 µg/kg) or saline. The impact of RvD1 on coagulation dysfunction was assessed by clotting time and coagulation indicators such as TAT, D-dimer, PAI-1, and fibrinogen. The activity of the coagulation system in vivo was observed by evaluating dynamic microcirculation, platelets and thrombin in mice using intravital microscopy. The effect of RvD1 on pyroptosis was investigated by measuring NOD-like receptor protein 3 (NLRP3), Caspase-1, Caspase-11, and Gasdermin D (GSDMD) levels via western blot. Caspase-1 knockout mice, GSDMD knockout mice and bone marrow-derived macrophages (BMDMs) were used to elucidate the underlying mechanisms. Lastly, the concentration of RvD1 in plasma from septic patients was quantified to explore its relationship with coagulation and pyroptosis. RESULTS: RvD1 significantly attenuated coagulation dysfunction in septic mice induced by LPS and CLP, and inhibited Caspase-1/GSDMD-dependent pyroptosis in septic mice and bone marrow-derived macrophages. In septic patients, the plasma concentrations of RvD1 was negatively correlated with both coagulation-related indicators and markers of GSDMD activation. CONCLUSION: The results suggest that RvD1 can improve coagulation dysfunction in sepsis by regulating the Caspase-1/GSDMD pyroptotic pathway. Additionally, the concentration of RvD1 in septic patient plasma is related to prognosis and DIC development. RvD1 could be a potential biomarker and a promising therapeutic alternative in sepsis-induced DIC.

4.
Free Radic Biol Med ; 215: 64-76, 2024 Mar.
Article En | MEDLINE | ID: mdl-38437927

BACKGROUND: Sepsis-induced cardiomyopathy (SICM) is common complication in septic patients with a high mortality and is characterized by an abnormal inflammation response, which was precisely regulated by endogenous specialized pro-resolving mediators (SPMs). However, the metabolic changes of cardiac SPMs during SICM and the roles of SPMs subset in the development of SICM remain unknown. METHODS: In this work, the SPMs concentration was assessed using ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) of SICM mice and SICM patients. The cardiac function was measured by echocardiography after the treatment of a SPMs subset, termed Resolvin D2 (RvD2). Caspase-11-/-, GSDMD-/- and double deficient (Caspase-11-/-GSDMD-/-) mice were used to clarify the mechanisms of RvD2 in SICM. RESULTS: We found that endogenous cardiac SPMs were disorders and RvD2 was decreased significantly and correlated with left ventricular ejection fraction (LVEF) and ß-BNP, cTnT in Lipopolysaccharide/Cecum ligation and puncture (CLP) induced SICM models. Treatment with RvD2 attenuated lethality, cardiac dysfunction and cardiomyocytes death during SICM. Mechanistically, RvD2 alleviated SICM via inhibiting Caspase-11/GSDMD-mediated cardiomyocytes pyroptosis. Finally, the plasma levels of RvD2 were also decreased and significantly correlated with IL-1ß, ß-BNP, cTnT and LVEF in patients with SICM. Of note, plasma RvD2 level is indicator of SICM patients from healthy controls or sepsis patients. CONCLUSION: These findings suggest that decreased cardiac RvD2 may involve in the pathogenesis of SICM. In addition, treatment with RvD2 represents a novel therapeutic strategy for SICM by inhibiting cardiomyocytes pyroptosis.


Cardiomyopathies , Docosahexaenoic Acids , Sepsis , Humans , Mice , Animals , Pyroptosis , Chromatography, Liquid , Stroke Volume , Tandem Mass Spectrometry , Ventricular Function, Left , Cardiomyopathies/etiology , Cardiomyopathies/genetics , Sepsis/complications , Sepsis/drug therapy , Sepsis/genetics , Gasdermins , Phosphate-Binding Proteins/genetics
5.
ACS Nano ; 18(12): 8885-8905, 2024 Mar 26.
Article En | MEDLINE | ID: mdl-38465890

As intervertebral disc degeneration (IVDD) proceeds, the dysfunctional mitochondria disrupt the viability of nucleus pulposus cells, initiating the degradation of the extracellular matrix. To date, there is a lack of effective therapies targeting the mitochondria of nucleus pulposus cells. Here, we synthesized polygallic acid-manganese (PGA-Mn) nanoparticles via self-assembly polymerization of gallic acid in an aqueous medium and introduced a mitochondrial targeting peptide (TP04) onto the nanoparticles using a Schiff base linkage, resulting in PGA-Mn-TP04 nanoparticles. With a size smaller than 50 nm, PGA-Mn-TP04 possesses pH-buffering capacity, avoiding lysosomal confinement and selectively accumulating within mitochondria through electrostatic interactions. The rapid electron exchange between manganese ions and gallic acid enhances the redox capability of PGA-Mn-TP04, effectively reducing mitochondrial damage caused by mitochondrial reactive oxygen species. Moreover, PGA-Mn-TP04 restores mitochondrial function by facilitating the fusion of mitochondria and minimizing their fission, thereby sustaining the vitality of nucleus pulposus cells. In the rat IVDD model, PGA-Mn-TP04 maintained intervertebral disc height and nucleus pulposus tissue hydration. It offers a nonoperative treatment approach for IVDD and other skeletal muscle diseases resulting from mitochondrial dysfunction, presenting an alternative to traditional surgical interventions.


Intervertebral Disc Degeneration , Mitochondrial Diseases , Nanoparticles , Rats , Animals , Intervertebral Disc Degeneration/drug therapy , Intervertebral Disc Degeneration/metabolism , Manganese/metabolism , Oxidative Stress , Mitochondria , Phenols , Mitochondrial Diseases/metabolism , Gallic Acid
6.
Biomed Pharmacother ; 174: 116447, 2024 May.
Article En | MEDLINE | ID: mdl-38518606

Sepsis-induced acute respiratory distress syndrome (ARDS) causes significant fatalities worldwide and lacks pharmacological intervention. Alveolar fluid clearance (AFC) plays a pivotal role in the remission of ARDS and is markedly impaired in the pathogenesis of ARDS. Here, we demonstrated that erythropoietin could effectively ameliorate lung injury manifestations and lethality, restore lung function and promote AFC in a rat model of lipopolysaccharide (LPS)-induced ARDS. Moreover, it was proven that EPO-induced restoration of AFC occurs through triggering the total protein expression of ENaC and Na,K-ATPase channels, enhancing their protein abundance in the membrane, and suppressing their ubiquitination for degeneration. Mechanistically, the data indicated the possible involvement of EPOR/JAK2/STAT3/SGK1/Nedd4-2 signaling in this process, and the pharmacological inhibition of the pathway markedly eliminated the stimulating effects of EPO on ENaC and Na,K-ATPase, and subsequently reversed the augmentation of AFC by EPO. Consistently, in vitro studies of alveolar epithelial cells paralleled with that EPO upregulated the expression of ENaC and Na,K-ATPase, and patch-clamp studies further demonstrated that EPO substantially strengthened sodium ion currents. Collectively, EPO could effectively promote AFC by improving ENaC and Na,K-ATPase protein expression and abundance in the membrane, dependent on inhibition of ENaC and Na,K-ATPase ubiquitination, and resulting in diminishing LPS-associated lung injuries.


Epithelial Sodium Channels , Erythropoietin , Rats, Sprague-Dawley , Respiratory Distress Syndrome , Sepsis , Sodium-Potassium-Exchanging ATPase , Ubiquitination , Animals , Epithelial Sodium Channels/metabolism , Sodium-Potassium-Exchanging ATPase/metabolism , Erythropoietin/pharmacology , Sepsis/complications , Sepsis/drug therapy , Sepsis/metabolism , Ubiquitination/drug effects , Respiratory Distress Syndrome/drug therapy , Respiratory Distress Syndrome/metabolism , Male , Rats , Pulmonary Alveoli/drug effects , Pulmonary Alveoli/metabolism , Pulmonary Alveoli/pathology , Lipopolysaccharides , Signal Transduction/drug effects , Disease Models, Animal
7.
Ann Rheum Dis ; 83(5): 564-575, 2024 Apr 11.
Article En | MEDLINE | ID: mdl-38272667

OBJECTIVE: Erythropoietin (EPO) known as an erythrocyte-stimulating factor is increased in patients with rheumatoid arthritis (RA). Nevertheless, the function of EPO in the process of RA and relative mechanism needs to be further clarified. METHODS: The level of EPO in serum and synovial fluid from patients with RA and healthy controls was determined by . Collagen-induced arthritis (CIA) mice were constructed to confirm the role of EPO on RA pathogenesis. Differentially expressed genes (DEGs) of EPO-treated fibroblast-like synoviocyte (FLS) were screened by transcriptome sequencing. The transcription factor of neuraminidase 3 (NEU3) of DEGs was verified by double luciferase reporting experiment, DNA pulldown, electrophoretic mobility shift assay and chromatin immunoprecipitation-quantitative PCR (qPCR) assay. RESULTS: The overexpression of EPO was confirmed in patients with RA, which was positively associated with Disease Activity Score 28-joint count. Additionally, EPO intervention could significantly aggravate the joint destruction in CIA models. The upregulation of NEU3 was screened and verified by transcriptome sequencing and qPCR in EPO-treated FLS, and signal transducer and activator of transcription 5 was screened and verified to be the specific transcription factor of NEU3. EPO upregulates NEU3 expression via activating the Janus kinase 2 (JAK2)-STAT5 signalling pathway through its receptor EPOR, thereby to promote the desialylation through enhancing the migration and invasion ability of FLS, which is verified by JAK2 inhibitor and NEU3 inhibitor. CONCLUSION: EPO, as a proinflammatory factor, accelerates the process of RA through transcriptional upregulation of the expression of NEU3 by JAK2/STAT5 pathway.


Arthritis, Experimental , Arthritis, Rheumatoid , Erythropoietin , Neuraminidase , Synoviocytes , Animals , Humans , Mice , Arthritis, Experimental/genetics , Arthritis, Experimental/metabolism , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/metabolism , Cell Proliferation , Cells, Cultured , Erythropoietin/metabolism , Fibroblasts/metabolism , Neuraminidase/metabolism , STAT5 Transcription Factor/metabolism , Synovial Membrane/metabolism , Synoviocytes/metabolism
8.
J Adv Res ; 2024 Jan 17.
Article En | MEDLINE | ID: mdl-38237770

INTRODUCTION: Acute respiratory distress syndrome (ARDS) is a pulmonary inflammatory process primarily caused by sepsis. The resolution of inflammation is an active process involving the endogenous biosynthesis of specialized pro-resolving mediators, including resolvin D1 (RvD1). Resident alveolar macrophages (RAMs) maintain pulmonary homeostasis and play a key role in the resolution phase. However, the role of RAMs in promoting the resolution of inflammation by RvD1 is unclear. OBJECTIVES: Here, we investigated the mechanisms of RvD1 on regulating RAMs to promote the resolution of ARDS. METHODS: Mice were administered lipopolysaccharide and/or Escherichia coli via aerosol inhalation to establish a self-limited ARDS model. Then, RvD1 was administered at the peak inflammatory response. RAMs self-renewal was measured by flow cytometry, RAM phagocytosis was measured by two-photon fluorescence imaging. In addition, plasma was collected from intensive care unit patients on days 0-2, 3-5, and 6-9 to measure RvD1 and S100A8/A9 levels using triple quadrupole/linear ion trap mass spectrometry. RESULTS: RAMs were found to play a pivotal role in resolving inflammation during ARDS, and RvD1 enhanced RAM proliferation and phagocytosis, which was abrogated by a lipoxin A4 receptor (ALX, RvD1 receptor) inhibitor. Both primary RAMs transfected with rS100A8/A9 and/or S100A8/A9 siRNA and S100A9-/- mice (also deficient in S100A8 function) showed higher turnover and phagocytic function, indicating that RvD1 exerted its effects on RAMs by inhibiting S100A8/A9 production in the resolution phase. RvD1 reduced S100A8/A9 and its upstream MAPK14 levels in vivo and in vitro. Finally, in the patients, RvD1 levels were lower, but S100A8/A9 levels were higher. CONCLUSIONS: We propose that RvD1 improved RAM self-renewal and phagocytosis via the ALX/MAPK14/S100A8/A9 signaling pathway. Plasma RvD1 and S100A8/A9 levels were negatively correlated, and associated with the outcome of sepsis-induced ARDS.

9.
Rheumatology (Oxford) ; 63(3): 826-836, 2024 Mar 01.
Article En | MEDLINE | ID: mdl-37326830

OBJECTIVE: Sialylation of the crystallizable fragment (Fc) of ACPAs, which is catalysed by ß-galactoside α-2,6-sialyltransferase 1 (ST6GAL1) could attenuate inflammation of RA. In this study, we screened the transcription factor of ST6GAL1 and elucidated the mechanism of transcriptionally upregulating sialylation of ACPAs in B cells to explore its role in the progression of RA. METHODS: Transcription factors interacting with the P2 promoter of ST6GAL1 were screened by DNA pull-down and liquid chromatography with tandem mass spectrometry (LC-MS/MS), and verified by chromatin immunoprecipitation (ChIP), dual luciferase reporter assay and electrophoretic mobility shift assay (EMSA). The function of the CCCTC-binding factor (CTCF) on the expression of ST6GAL1 and the inflammatory effect of ACPAs were verified by knocking down and overexpressing CTCF in B cells. The CIA model was constructed from B cell-specific CTCF knockout mice to explore the effect of CTCF on arthritis progression. RESULTS: We observed that the levels of ST6GAL1 and ACPAs sialylation decreased in the serum of RA patients and were negatively correlated with DAS28 scores. Subsequently, CTCF was screened and verified as the transcription factor interacting with the P2 promoter of ST6GAL1, which enhances the sialylation of ACPAs, thus weakening the inflammatory activity of ACPAs. Furthermore, the above results were also verified in the CIA model constructed from B cell-specific CTCF knockout mice. CONCLUSION: CCCTC-binding factor is the specific transcription factor of ß-galactoside α-2,6-sialyltransferase 1 in B cells that upregulates the sialylation of ACPAs in RA and attenuates the disease progression.


Aminosalicylic Acids , Arthritis, Rheumatoid , Galactosides , Transcription Factors , Animals , Mice , Humans , CCCTC-Binding Factor , Anti-Citrullinated Protein Antibodies , Chromatography, Liquid , Tandem Mass Spectrometry , Mice, Knockout , Sialyltransferases/genetics
10.
Shock ; 61(1): 49-54, 2024 Jan 01.
Article En | MEDLINE | ID: mdl-37878479

ABSTRACT: Background: Traumatic brain injury (TBI) is a head trauma usually associated with death and endothelial glycocalyx damage. Syndecan-1 (SDC-1)-a biomarker of glycocalyx degradation-has rarely been reported in meta-analyses to determine the clinical prognostic value in TBI patients. Methods: We looked into PubMed, EMBASE, Cochrane Library, and Web of Science databases from January 1, 1990, to May 1, 2023, to identify eligible studies. A meta-analysis was conducted using RevMan 5.4 and Stata 16.0 with the search terms "SDC-1" and "traumatic brain injury." Results: The present study included five studies with a total of 640 enrolled patients included. Syndecan-1 concentrations were higher in the isotrauma TBI group than in the non-TBI group (standardized mean difference [SMD] = 0.52; 95% CI: 0.03-1.00; P = 0.04). Subgroup analysis revealed statistical significance when comparing the SDC-1 level of multitrauma TBI (TBI + other injuries) group with the isotrauma TBI group (SMD = 0.74; 95% CI: 0.42-1.05; P < 0.001), and the SDC-1 level of the TBI coagulopathy (+) group (TBI with early coagulopathy) with the TBI coagulopathy (-) group (SMD = 1.75; 95% CI: 0.41-3.10; P = 0.01). Isotrauma TBI patients with higher SDC-1 level were at a higher risk of 30-day in-hospital mortality (odds ratio = 3.32; 95% CI: 1.67-6.60; P = 0.0006). Conclusion: This meta-analysis suggests that SDC-1 could be a biomarker of endotheliopathy and coagulopathy in TBI, as it was increased in isotrauma TBI patients and was higher in multitrauma TBI patients. There is a need for additional research into the use of SDC-1 as a prognostic biomarker in TBI, especially in isotrauma TBI patients.


Blood Coagulation Disorders , Brain Injuries, Traumatic , Multiple Trauma , Humans , Biomarkers , Brain Injuries, Traumatic/diagnosis , Prognosis , Syndecan-1
11.
JCI Insight ; 9(1)2024 Jan 09.
Article En | MEDLINE | ID: mdl-37971881

The lymphatic vasculature is the natural pathway for the resolution of inflammation, yet the role of pulmonary lymphatic drainage function in sepsis-induced acute respiratory distress syndrome (ARDS) remains poorly characterized. In this study, indocyanine green-near infrared lymphatic living imaging was performed to examine pulmonary lymphatic drainage function in septic mouse models. We found that the pulmonary lymphatic drainage was impaired owing to the damaged lymphatic structure in sepsis-induced ARDS. Moreover, prior lymphatic defects by blocking vascular endothelial growth factor receptor-3 (VEGFR-3) worsened sepsis-induced lymphatic dysfunction and inflammation. Posttreatment with vascular endothelial growth factor-C (Cys156Ser) (VEGF-C156S), a ligand of VEGFR-3, ameliorated lymphatic drainage by rejuvenating lymphatics to reduce the pulmonary edema and promote draining of pulmonary macrophages and neutrophils to pretracheal lymph nodes. Meanwhile, VEGF-C156S posttreatment reversed sepsis-inhibited CC chemokine ligand 21 (CCL21), which colocalizes with pulmonary lymphatic vessels. Furthermore, the advantages of VEGF-C156S on the drainage of inflammatory cells and edema fluid were abolished by blocking VEGFR-3 or CCL21. These results suggest that efficient pulmonary lymphatic drainage is necessary for inflammation resolution in ARDS. Our findings offer a therapeutic approach to sepsis-induced ARDS by promoting lymphatic drainage function.


Lymphatic Vessels , Respiratory Distress Syndrome , Sepsis , Mice , Animals , Vascular Endothelial Growth Factor C/metabolism , Vascular Endothelial Growth Factor Receptor-3/metabolism , Vascular Endothelial Growth Factor A/metabolism , Ligands , Lymphatic Vessels/pathology , Inflammation/metabolism , Respiratory Distress Syndrome/pathology , Sepsis/metabolism
12.
J Inflamm Res ; 16: 3271-3281, 2023.
Article En | MEDLINE | ID: mdl-37560514

Physiological activity cannot be regulated without the blood and lymphatic vasculatures, which play complementary roles in maintaining the body's homeostasis and immune responses. Inflammation is the body's initial response to pathological injury and is responsible for protecting the body, removing damaged tissues, and restoring and maintaining homeostasis in the body. A growing number of researches have shown that blood and lymphatic vessels play an essential role in a variety of inflammatory diseases. In the inflammatory state, the permeability of blood vessels and lymphatic vessels is altered, and angiogenesis and lymphangiogenesis subsequently occur. The blood vascular and lymphatic vascular systems interact to determine the development or resolution of inflammation. In this review, we discuss the changes that occur in the blood vascular and lymphatic vascular systems of several organs during inflammation, describe the different scenarios of angiogenesis and lymphangiogenesis at different sites of inflammation, and demonstrate the prospect of targeting the blood vasculature and lymphatic vasculature systems to limit the development of inflammation and promote the resolution of inflammation in inflammatory diseases.

13.
Biomed Pharmacother ; 165: 115072, 2023 Sep.
Article En | MEDLINE | ID: mdl-37390712

Septic gut damage is critical in the progression of sepsis and multiple organ failure, characterized by gut microbiota dysbiosis and epithelium deficiency in the gut barrier. Recent studies highlight the protective effects of Erythropoietin (EPO) on multiple organs. The present study found that EPO treatment significantly alleviated the survival rate, suppressed inflammatory responses, and ameliorated intestine damage in mice with sepsis. EPO treatment also reversed sepsis-induced gut microbiota dysbiosis. The protective role of EPO in the gut barrier and microbiota was impaired after EPOR knockout. Notably, we innovatively demonstrated that IL-17 F screened by transcriptome sequencing could ameliorate sepsis and septic gut damage including gut microbiota dysbiosis and barrier dysfunction, which was verified by IL-17 F-treated fecal microbiota transplantation (FMT) as well. Our findings highlight the protection effects of EPO-mediated IL-17 F in sepsis-induced gut damage by alleviating gut barrier dysfunction and restoring gut microbiota dysbiosis. EPO and IL-17 F may be potential therapeutic targets in septic patients.


Erythropoietin , Gastrointestinal Microbiome , Sepsis , Mice , Animals , Dysbiosis/therapy , Interleukin-17 , Erythropoietin/pharmacology , Sepsis/complications
14.
J Transl Med ; 21(1): 293, 2023 04 30.
Article En | MEDLINE | ID: mdl-37121999

BACKGROUND: Acute lung injury (ALI) is a common and serious complication of sepsis with high mortality. Ferroptosis, categorized as programmed cell death, contributes to the development of lung injury. Protectin conjugates in tissue regeneration 1 (PCTR1) is an endogenous lipid mediator that exerts protective effects against multiorgan injury. However, the role of PCTR1 in the ferroptosis of sepsis-related ALI remains unknown. METHODS: A pulmonary epithelial cell line and a mouse model of ALI stimulated with lipopolysaccharide (LPS) were established in vitro and in vivo. Ferroptosis biomarkers, including ferrous (Fe2+), glutathione (GSH), malondialdehyde (MDA) and 4-Hydroxynonenal (4-HNE), were assessed by relevant assay kits. Glutathione peroxidase 4 (GPX4) and prostaglandin-endoperoxide synthase 2 (PTGS2) protein levels were determined by western blotting. Lipid peroxides were examined by fluorescence microscopy and flow cytometry. Cell viability was determined by a CCK-8 assay kit. The ultrastructure of mitochondria was observed with transmission electron microscopy. Morphology and inflammatory cytokine levels predicted the severity of lung injury. Afterward, related inhibitors were used to explore the potential mechanism by which PCTR1 regulates ferroptosis. RESULTS: PCTR1 treatment protected mice from LPS-induced lung injury, which was consistent with the effect of the ferroptosis inhibitor ferrostatin-1. PCTR1 treatment decreased Fe2+, PTGS2 and lipid reactive oxygen species (ROS) contents, increased GSH and GPX4 levels and ameliorated mitochondrial ultrastructural injury. Administration of LPS or the ferroptosis agonist RSL3 resulted in reduced cell viability, which was rescued by PCTR1. Mechanistically, inhibition of the PCTR1 receptor lipoxin A4 (ALX), protein kinase A (PKA) and transcription factor cAMP-response element binding protein (CREB) partly decreased PCTR1 upregulated GPX4 expression and a CREB inhibitor blocked the effects ofPCTR1 on ferroptosis inhibition and lung protection. CONCLUSION: This study suggests that PCTR1 suppresses LPS-induced ferroptosis via the ALX/PKA/CREB signaling pathway, which may offer promising therapeutic prospects in sepsis-related ALI.


Acute Lung Injury , Ferroptosis , Sepsis , Animals , Mice , CD59 Antigens , Cyclooxygenase 2 , Lipopolysaccharides/pharmacology , Acute Lung Injury/drug therapy , Acute Lung Injury/etiology , Sepsis/complications , Activating Transcription Factor 2
15.
J Inflamm Res ; 16: 421-431, 2023.
Article En | MEDLINE | ID: mdl-36755970

Background: Bronchopulmonary dysplasia (BPD) is a common chronic lung disease in premature infants with limited treatments and poor prognosis. Damaged endothelial glycocalyx leads to vascular permeability, lung edema and inflammation. However, whether hyperoxia increases neonatal pulmonary microvascular permeability by degrading the endothelial glycocalyx remains unknown. Methods: Newborn mice were maintained in 60-70% O2 for 7 days. Protectin DX (PDX), an endogenous lipid mediator, was injected intraperitoneally on postnatal d 0, 2, 4 and 6. Lung samples and bronchoalveolar lavage fluid were taken at the end of the study. Primary human umbilical vein endothelial cells (HUVECs) were cultured in 80%O2. Results: Hyperoxia exposure for 7 days led to neonatal mice alveolar simplification with less radial alveolar count (RAC), mean linear intercept (MLI) and mean alveolar diameter (MAD) compared to the control group. Hyperoxia exposure increased lung vascular permeability with more fluid and proteins and inflammatory factors, including TNF-α and IL-1ß, in bronchoalveolar lavage fluid while reducing the heparan sulfate (HS), the most abundant component of the endothelial glycocalyx, in the pulmonary endothelial cells. PDX relieve these changes. PDX attenuated hyperoxia-induced high expression of heparanase (HPA), the endoglycosidase that shed endothelial glycocalyx, p-P65, P65, and low expression of SIRT1. BOC-2 and EX527 abolished the affection of PDX both in vivo and intro. Conclusion: In summary, our findings indicate that PDX treatment relieves hyperoxia-induced alveolar simplification, vascular leakage and lung inflammation by attenuating pulmonary endothelial glycocalyx injury via the SIRT1/NF-κB/ HPA pathway.

16.
Lab Invest ; 103(1): 100028, 2023 01.
Article En | MEDLINE | ID: mdl-36748190

Protectin conjugates in tissue regeneration 1 (PCTR1) is a novel anti-inflammatory and proresolving lipid mediator biosynthesized from docosahexaenoic acid. Excessive activation of NLR family pyrin domain containing 3 (NLRP3) inflammasome and consequent pyroptosis are involved in diverse inflammatory diseases. However, how PCTR1 affects NLRP3 inflammasome activation and pyroptosis are still unclear. Here, we demonstrated that PCTR1 inhibited NLRP3 inflammasome activation and pyroptosis. These results show that PCTR1 dose-dependently inhibited gasdermin D cleavage in lipopolysaccharide (LPS)-primed murine primary macrophages upon nigericin stimulation. Additionally, PCTR1 treatment after LPS priming inhibited caspase-1 activation and subsequent mature interleukin-1ß release independent of the nuclear factor-kappa B pathway. PCTR1 exerted its inhibitory effects by blocking NLRP3-apoptosis-associated speck-like protein containing a CARD (ASC) interaction and ASC oligomerization, thereby restricting NLRP3 inflammasome assembly. However, the inhibitory effect of PCTR1 could be reversed by KH7 and H89, which are the inhibitors of the cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) signaling pathway. Moreover, PCTR1 treatment alleviated lung tissue damage and improved mouse survival in LPS-induced sepsis. Our study unveils the molecular mechanism of negative regulation of NLRP3 inflammasome activation and pyroptosis by a novel lipid mediator and suggests that PCTR1 may serve as a potential treatment option for NLRP3-inflammasome driven diseases.


Inflammasomes , Sepsis , Mice , Animals , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pyroptosis , CD59 Antigens/metabolism , CD59 Antigens/pharmacology , Lipopolysaccharides/pharmacology , Macrophages/metabolism , Sepsis/drug therapy , Sepsis/metabolism , Interleukin-1beta/metabolism , Caspase 1/metabolism
17.
Mil Med Res ; 9(1): 56, 2022 10 09.
Article En | MEDLINE | ID: mdl-36209190

Sepsis is a common complication of combat injuries and trauma, and is defined as a life-threatening organ dysfunction caused by a dysregulated host response to infection. It is also one of the significant causes of death and increased health care costs in modern intensive care units. The use of antibiotics, fluid resuscitation, and organ support therapy have limited prognostic impact in patients with sepsis. Although its pathophysiology remains elusive, immunosuppression is now recognized as one of the major causes of septic death. Sepsis-induced immunosuppression is resulted from disruption of immune homeostasis. It is characterized by the release of anti-inflammatory cytokines, abnormal death of immune effector cells, hyperproliferation of immune suppressor cells, and expression of immune checkpoints. By targeting immunosuppression, especially with immune checkpoint inhibitors, preclinical studies have demonstrated the reversal of immunocyte dysfunctions and established host resistance. Here, we comprehensively discuss recent findings on the mechanisms, regulation and biomarkers of sepsis-induced immunosuppression and highlight their implications for developing effective strategies to treat patients with septic shock.


Immune Checkpoint Inhibitors , Sepsis , Anti-Bacterial Agents/therapeutic use , Anti-Inflammatory Agents/therapeutic use , Biomarkers , Cytokines , Humans , Immunosuppression Therapy , Sepsis/complications , Sepsis/diagnosis , Sepsis/therapy
18.
Front Immunol ; 13: 934061, 2022.
Article En | MEDLINE | ID: mdl-35990694

Connective tissue growth factor (CTGF) has been recently acknowledged as an ideal biomarker in the early disease course, participating in the pathogenesis of pannus formation in rheumatoid arthritis (RA). However, existing approaches for the detection of or antagonist targeting CTGF are either lacking or unsatisfactory in the diagnosis and treatment of RA. To address this, we synthesized and screened high-affinity single-stranded DNA aptamers targeting CTGF through a protein-based SELEX procedure. The structurally optimized variant AptW2-1-39-PEG was characterized thoroughly for its high-affinity (KD 7.86 nM), sensitivity (minimum protein binding concentration, 2 ng), specificity (negative binding to other biomarkers of RA), and stability (viability-maintaining duration in human serum, 48 h) properties using various biochemical and biophysical assays. Importantly, we showed the antiproliferative and antiangiogenic activities of the aptamers obtained using functional experiments and further verified the therapeutic effect of the aptamers on joint injury and inflammatory response in collagen-induced arthritis (CIA) mice, thus advancing this study into actual therapeutic application. Furthermore, we revealed that the binding within AptW2-1-39-PEG/CTGF was mediated by the thrombospondin 1 (TSP1) domain of CTGF using robust bioinformatics tools together with immunofluorescence. In conclusion, our results revealed a novel aptamer that holds promise as an additive or alternative approach for CTGF-targeting diagnostics and therapeutics for RA.


Aptamers, Nucleotide , Arthritis, Experimental , Arthritis, Rheumatoid , Corneal Neovascularization , Animals , Aptamers, Nucleotide/chemistry , Aptamers, Nucleotide/pharmacology , Aptamers, Nucleotide/therapeutic use , Arthritis, Experimental/diagnosis , Arthritis, Experimental/drug therapy , Arthritis, Experimental/metabolism , Arthritis, Rheumatoid/diagnosis , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/metabolism , Connective Tissue Growth Factor/genetics , Humans , Mice , Pannus
19.
Front Cell Infect Microbiol ; 12: 915099, 2022.
Article En | MEDLINE | ID: mdl-35719361

Sepsis, a life-threatening organ dysfunction, is not caused by direct damage of pathogens and their toxins but by the host's severe immune and metabolic dysfunction caused by the damage when the host confronts infection. Previous views focused on the damage-associated molecular patterns (DAMPs) and pathogen-associated molecular patterns (PAMPs), including metabolic proinflammatory factors in sepsis. Recently, new concepts have been proposed to group free fatty acids (FFAs), glucose, advanced glycation end products (AGEs), cholesterol, mitochondrial DNA (mtDNA), oxidized phospholipids (OxPLs), ceramides, and uric acid into metabolism-associated molecular patterns (MAMPs). The concept of MAMPs will bring new guidance to the research and potential treatments of sepsis. Nowadays, sepsis is regarded as closely related to metabolic disorders, and MAMPs play an important role in the pathogenesis and development of sepsis. According to this view, we have explained MAMPs and their possible roles in the pathogenesis of sepsis. Next, we have further explained the specific functions of different types of MAMPs in the metabolic process and their interactional relationship with sepsis. Finally, the therapeutic prospects of MAMPs in sepsis have been summarized.


Sepsis , Alarmins , Humans , Mitochondria/metabolism , Pathogen-Associated Molecular Pattern Molecules
20.
Br J Pharmacol ; 179(22): 5132-5147, 2022 11.
Article En | MEDLINE | ID: mdl-35764296

BACKGROUND AND PURPOSE: Pulmonary arterial hypertension (PAH) is a pulmonary vasculature obstructive disease that leads to right heart failure and death. Maresin 1 is an endogenous lipid mediator known to promote inflammation resolution. However, the effect of Maresin 1 on PAH remains unclear. EXPERIMENTAL APPROACH: The serum Maresin 1 concentration was assessed using UPLC. A mouse model of PAH was established by combining the Sugen 5416 injection and hypoxia exposure. After treatment with Maresin 1, the right ventricular systolic pressure (RVSP) and right ventricular function were measured by haemodynamic measurement and echocardiography, respectively. Vascular remodelling was evaluated by histological staining. Confocal microscopy and western blot were used to test related protein expression. In vitro cell migration, proliferation and apoptosis assays were performed in primary rat pulmonary artery smooth muscle cells (PASMCs). Western blotting and siRNA transfection were used to clarify the mechanism of Maresin 1. KEY RESULTS: Endogenous serum Maresin 1 was decreased in PAH patients and mice. Maresin 1 treatment decreased RVSP and attenuated right ventricular dysfunction (RVD) in the murine PAH model. Maresin 1 reversed abnormal changes in pulmonary vascular remodelling, attenuating endothelial to mesenchymal transformation and enhancing apoptosis of α-SMA positive cells. Furthermore, Maresin 1 inhibited PASMC proliferation and promoted apoptosis by inhibiting STAT, AKT, ERK, and FoxO1 phosphorylation via LGR6. CONCLUSION AND IMPLICATIONS: Maresin 1 improved abnormal pulmonary vascular remodelling and right ventricular dysfunction in PAH mice, targeting aberrant PASMC proliferation. This suggests Maresin 1 may have a potent therapeutic effect in vascular disease.


Hypertension, Pulmonary , Pulmonary Arterial Hypertension , Ventricular Dysfunction, Right , Animals , Cell Proliferation , Docosahexaenoic Acids/pharmacology , Mice , Myocytes, Smooth Muscle , Proto-Oncogene Proteins c-akt/metabolism , Pulmonary Arterial Hypertension/drug therapy , Pulmonary Artery , RNA, Small Interfering/pharmacology , Rats , Vascular Remodeling , Ventricular Dysfunction, Right/metabolism , Ventricular Dysfunction, Right/pathology
...