Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Acta Biomater ; 146: 49-65, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35500813

RESUMEN

To effectively treat diabetic wounds, the development of versatile medical dressings that can long-term regulate blood glucose and highly effective anti-oxidative stress, antibacterial and anti-inflammatory are critical. Here, an all-in-one CO gas-therapy-based versatile hydrogel dressing (ICOQF) was developed via the dynamic Schiff base reaction between the amino groups on quaternized chitosan (QCS) and the aldehyde groups on benzaldehyde-terminated F108 (F108-CHO) micelles. CORM-401 (an oxidant-sensitive CO-releasing molecules) was encapsulated in the hydrophobic core of F108-CHO micelles and insulin was loaded in the three-dimensional network structure of ICOQF. The dynamic Schiff base bonds not only endowed ICOQF with good tissue adhesion, injectability and self-healing, but also gave it sustained and controllable insulin release ability. In addition, ICOQF could quickly generate CO in inflamed wound tissue by consuming reactive oxygen species. The generated CO could effectively anti-oxidative stress by activating the expression of heme oxygenase; antibacterial by inducing the rupture of bacterial cell membranes and mitochondrial dysfunction and inhibiting the synthesis of adenosine triphosphate; and anti-inflammatory by inhibiting the proliferation of activated macrophages and promoting the polarization of the M1 phenotype to the M2 phenotype. Due to these outstanding properties, ICOQF significantly promoted the healing of STZ-induced MRSA-infected diabetic wounds accompanied by good biocompatibility. This study clearly shows that ICOQF is a versatile hydrogel dressing with great application potential for the management of diabetic wounds. STATEMENT OF SIGNIFICANCE: The development of some versatile hydrogel dressings that can not only provide a prolonged and controlled insulin release property but also utilize a non-antibiotic treatment modality for highly effective antibacterial, anti-inflammatory, and anti-oxidative stress effects is vital for the successful treatment of diabetic wounds. Herein, we developed an all-in-one CO gas-therapy-based versatile hydrogel dressing (ICOQF) with sustained and controllable insulin release abilities. Moreover, ICOQF could not only quickly release CO in the inflamed wound tissue by consumption of reactive oxygen species but also utilize the generated CO to highly effectively anti-oxidative stress, antibacterial, and anti-inflammatory. ICOQF therapy substantially promoted the healing of STZ-induced MRSA-infected diabetic wounds. Overall, this work provides a multifunctional hydrogel dressing for the management of diabetic wounds.


Asunto(s)
Diabetes Mellitus , Infección de Heridas , Antibacterianos/química , Antiinflamatorios , Vendajes , Humanos , Hidrogeles/química , Hidrogeles/farmacología , Insulina/farmacología , Micelas , Estrés Oxidativo , Especies Reactivas de Oxígeno , Bases de Schiff/química
2.
Molecules ; 26(24)2021 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-34946643

RESUMEN

Low color temperature candlelight organic light-emitting diodes (LEDs) are human and environmentally friendly because of the absence of blue emission that might suppress at night the secretion of melatonin and damage retina upon long exposure. Herein, we demonstrated a lighting device incorporating a phenoxazine-based host material, 3,3-bis(phenoxazin-10-ylmethyl)oxetane (BPMO), with the use of orange-red and yellow phosphorescent dyes to mimic candlelight. The resultant BPMO-based simple structured candlelight organic LED device permitted a maximum exposure limit of 57,700 s, much longer than did a candle (2750 s) or an incandescent bulb (1100 s) at 100 lx. The resulting device showed a color temperature of 1690 K, which is significantly much lower than that of oil lamps (1800 K), candles (1900 K), or incandescent bulbs (2500 K). The device showed a melatonin suppression sensitivity of 1.33%, upon exposure for 1.5 h at night, which is 66% and 88% less than the candle and incandescent bulb, respectively. Its maximum power efficacy is 23.1 lm/W, current efficacy 22.4 cd/A, and external quantum efficiency 10.2%, all much higher than the CBP-based devices. These results encourage a scalable synthesis of novel host materials to design and manufacture high-efficiency candlelight organic LEDs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...