Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Immunother Cancer ; 12(7)2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39009452

RESUMEN

BACKGROUND: Triple-negative breast cancer (TNBC) poses unique challenges due to its complex nature and the need for more effective treatments. Recent studies showed encouraging outcomes from combining paclitaxel (PTX) with programmed cell death protein-1 (PD-1) blockade in treating TNBC, although the exact mechanisms behind the improved results are unclear. METHODS: We employed an integrated approach, analyzing spatial transcriptomics and single-cell RNA sequencing data from TNBC patients to understand why the combination of PTX and PD-1 blockade showed better response in TNBC patients. We focused on toll-like receptor 4 (TLR4), a receptor of PTX, and its role in modulating the cross-presentation signaling pathways in tumor-associated macrophages (TAMs) within the tumor microenvironment. Leveraging insights obtained from patient-derived data, we conducted in vitro experiments using immunosuppressive bone marrow-derived macrophages (iBMDMs) to validate if PTX could augment the cross-presentation and phagocytosis activities. Subsequently, we extended our study to an in vivo murine model of TNBC to ascertain the effects of PTX on the cross-presentation capabilities of TAMs and its downstream impact on CD8+ T cell-mediated immune responses. RESULTS: Data analysis from TNBC patients revealed that the activation of TLR4 and cross-presentation signaling pathways are crucial for the antitumor efficacy of PTX. In vitro studies showed that PTX treatment enhances the cross-presentation ability of iBMDMs. In vivo experiments demonstrated that PTX activates TLR4-dependent cross-presentation in TAMs, improving CD8+ T cell-mediated antitumor responses. The efficacy of PTX in promoting antitumor immunity was elicited when combined with PD-1 blockade, suggesting a complementary interaction. CONCLUSIONS: This study reveals how PTX boosts the effectiveness of PD-1 inhibitors in treating TNBC. We found that PTX activates TLR4 signaling in TAMs. This activation enhances their ability to present antigens, thereby boosting CD8+ T cell antitumor responses. These findings not only shed light on PTX's immunomodulatory role in TNBC but also underscore the potential of targeting TAMs' antigen presentation capabilities in immunotherapy approaches.


Asunto(s)
Paclitaxel , Neoplasias de la Mama Triple Negativas , Macrófagos Asociados a Tumores , Paclitaxel/farmacología , Paclitaxel/uso terapéutico , Humanos , Femenino , Macrófagos Asociados a Tumores/inmunología , Macrófagos Asociados a Tumores/efectos de los fármacos , Macrófagos Asociados a Tumores/metabolismo , Ratones , Animales , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/inmunología , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/metabolismo , Microambiente Tumoral/efectos de los fármacos , Receptor Toll-Like 4/metabolismo , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Línea Celular Tumoral
2.
Inflamm Regen ; 43(1): 35, 2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37438837

RESUMEN

BACKGROUND: This study aimed to investigate how aging alters the homeostasis of the colonic intestinal epithelium and regeneration after tissue injury using organoid models and to identify its underlying molecular mechanism. METHODS: To investigate aging-related changes in the colonic intestinal epithelium, we conducted organoid cultures from old (older than 80 weeks) and young (6-10 weeks) mice and compared the number and size of organoids at day 5 of passage 0 and the growth rate of organoids between the two groups. RESULTS: The number and size of organoids from old mice was significantly lower than that from young mice (p < 0.0001) at day 5 of passage 0. The growth rate of old-mouse organoids from day 4 to 5 of passage 0 was significantly slower than that of young-mouse organoids (2.21 times vs. 1.16 times, p < 0.001). RNA sequencing showed that TGF-ß- and cell cycle-associated genes were associated with the aging effect. With regard to mRNA and protein levels, Smad3 and p-Smad3 in the old-mouse organoids were markedly increased compared with those in the young-mouse organoids. Decreased expression of ID1, increased expression of p16INK4a, and increased cell cycle arrest were observed in the old mouse-organoids. Treatment with SB431542, a type I TGF-ß receptor inhibitor, significantly increased the formation and growth of old-mouse organoids, and TGF-ß1 treatment markedly suppressed the formation of young-mouse organoids. In the acute dextran sulfate sodium-colitis model and its organoid experiments, the colonic epithelial regeneration after tissue injury in old mice was significantly decreased compared with young mice. CONCLUSIONS: Aging reduced the formation ability and growth rate of colonic epithelial organoids by increasing cell cycle arrest through TGF-ß-Smad3-p16INK4a signaling.

3.
BMC Cancer ; 22(1): 341, 2022 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-35351071

RESUMEN

BACKGROUND: Since colon cancer stem cells (CSCs) play an important role in chemoresistance and in tumor recurrence and metastasis, targeting of CSCs has emerged as a sophisticated strategy for cancer therapy. α-mangostin (αM) has been confirmed to have antiproliferative and apoptotic effects on cancer cells. This study aimed to evaluate the selective inhibition of αM on CSCs in colorectal cancer (CRC) and the suppressive effect on 5-fluorouracil (5-FU)-induced CSCs. METHODS: The cell viability assay was performed to determine the optimal concentration of αM. A sphere forming assay and flow cytometry with CSC markers were carried out to evaluate the αM-mediated inhibition of CSCs. Western blot analysis and quantitative real-time PCR were performed to investigate the effects of αM on the Notch signaling pathway and colon CSCs. The in vivo anticancer efficacy of αM in combination with 5-FU was investigated using a xenograft mouse model. RESULTS: αM inhibited the cell viability and reduced the number of spheres in HT29 and SW620 cells. αM treatment decreased CSCs and suppressed the 5-FU-induced an increase in CSCs on flow cytometry. αM markedly suppressed Notch1, NICD1, and Hes1 in the Notch signaling pathway in a time- and dose-dependent manner. Moreover, αM attenuated CSC markers CD44 and CD133, in a manner similar to that upon DAPT treatment, in HT29 cells. In xenograft mice, the tumor and CSC makers were suppressed in the αM group and in the αM group with 5-FU treatment. CONCLUSION: This study shows that low-dose αM inhibits CSCs in CRC and suppresses 5-FU-induced augmentation of CSCs via the Notch signaling pathway.


Asunto(s)
Neoplasias del Colon , Animales , Línea Celular Tumoral , Neoplasias del Colon/patología , Humanos , Ratones , Recurrencia Local de Neoplasia/patología , Células Madre Neoplásicas/metabolismo , Xantonas
4.
Langmuir ; 26(7): 5072-6, 2010 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-20350010

RESUMEN

Long-term stability of intermediate liquid crystal pretilt angles on a poly(dimethylsiloxane) (PDMS) ultrathin film grafted onto a surface was realized simply and easily via low-energy ion beam (IB) treatment. The composition and surface energy of the thin film could be controlled by varying the low-energy IB treatment. This treatment results in the permanent chemical modification of the film surface, converting it from organic PDMS to a mixed layer of organic PDMS and inorganic silica. The partial transformation of a PDMS surface gives rise to the control of the pretilt angle via the formation of the inhomogeneous surface and the stabilization of the pretilt angle via the cross-linking reaction of broken chemical bonds through IB irradiation. As a result, a continuous variation of pretilt angles that maintained their initial value with long-term stability was obtained. Thus, the unique chemical transformation of the PDMS surface using IB treatment may allow for the production of durable intermediate liquid crystal pretilt angles.


Asunto(s)
Dimetilpolisiloxanos/química , Cristales Líquidos/química , Membranas Artificiales , Dióxido de Silicio/química , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA