Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(13): 16086-16095, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38506502

RESUMEN

Solar water oxidation is a crucial process in light-driven reductive synthesis, providing electrons and protons for various chemical reductions. Despite advances in light-harvesting materials and cocatalysts, achieving high efficiency and stability remains challenging. In this study, we present a simple yet effective strategy for immobilizing natural photosystems (PS) made of abundant and inexpensive elements, using amine-rich polyethylenimine (PEI) hydrogels, to fabricate organic/inorganic hybrid photoanodes. Natural PS II extracted from spinach was successfully immobilized on inverse opal TiO2 photoanodes in the presence of PEI hydrogels, leading to greatly enhanced solar water oxidation activity. Photoelectrochemical (PEC) analyses reveal that PS II can be immobilized in specific orientations through electrostatic interactions between the positively charged amine groups of PEI and the negatively charged stromal side of PS II. This specific orientation ensures efficient photogenerated charge separation and suppresses undesired side reactions such as the production of reactive oxygen species. Our study provides an effective immobilization platform and sheds light on the potential utilization of PS II in PEC water oxidation.

2.
ACS Appl Bio Mater ; 2(5): 2109-2115, 2019 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35030650

RESUMEN

Natural photosystems (PSs) have received much attention as a biological solar energy harvester because of their high quantum efficiency for energy transfer. However, the PSs hybridized with solid electrodes exhibit low light-harvesting efficiencies because of poor interface properties and random orientations of PSs, all of which interfere with efficient charge extraction and transfer. Herein, we report the linker-free, oriented self-assembly of natural PSs with nitrogen-doped carbon nanotubes (NCNTs) via electrostatic interaction. Protonated nitrogen-doped sites on the NCNTs facilitate spontaneous immobilization of the negatively charged stroma side of PSs, which provides a favorable orientation for electron transfer without electrically insulating polymer linkers. The resulting PS/NCNT hybrids exhibit a photocurrent density of 1.25 ± 0.08 µA cm-2, which is much higher than that of PS/CNT hybrids stabilized with polyethylenimine (0.60 ± 0.01 µA cm-2) and sodium dodecyl sulfate (0.14 ± 0.01 µA cm-2), respectively. This work emphasizes the importance of the linker-free assembly of PSs into well-oriented hybrid structures to construct an efficient light-harvesting electrode.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA