Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
J Surg Res ; 296: 447-455, 2024 Apr.
Article En | MEDLINE | ID: mdl-38320364

INTRODUCTION: Thermal injuries are caused by exposure to a wide variety of agents including heat, electricity, radiation, chemicals, and friction. Early intervention can decrease injury severity by preventing excess inflammation and mitigating burn wound progression for improved healing outcomes. Previous studies have demonstrated that cannabinoids can trigger anti-inflammatory responses and promote wound closure. Therefore, the purpose of this study was to investigate whether a topical application of Noneuphoric Phytocannabinoid Elixir 14 (NEPE14) containing a full complement of phytocannabinoids (< 0.3% delta-9-tetrahydrocannabinol or cannabidiol) and other phytochemicals would mitigate burn wound progression in the treatment of deep partial-thickness burn wounds. METHODS: Deep partial-thickness burns were created on the dorsum of four anesthetized pigs and treated with NEPE14, Vehicle control, Silverlon, or gauze. The burns were assessed on postburn days 4, 7, and 14. Assessments consisted of digital photographs, Laser-Speckle imagery (blood perfusion), MolecuLight imagery (qualitative bacterial load), and biopsies for histology and immunohistochemistry (interleukin six and tumor necrosis factor-α). RESULTS: Topical treatment with NEPE14 significantly (P < 0.001) decreased inflammation (interleukin six and tumor necrosis factor-α) in comparison to control groups. It was also demonstrated that the reduction in inflammation led to mitigation of burn wound progression. In terms of wound healing and presence of bacteria, no statistically significant differences were observed. CONCLUSIONS: Topical treatment of deep partial-thickness burns with NEPE14 decreased wound inflammation and mitigated burn wound progression in comparison to control treatments.


Burns , Tumor Necrosis Factor-alpha , Swine , Animals , Wound Healing/physiology , Burns/complications , Burns/therapy , Burns/pathology , Inflammation , Interleukins
2.
Polymers (Basel) ; 13(18)2021 Sep 18.
Article En | MEDLINE | ID: mdl-34578075

Thermal injuries pose a risk for service members in prolonged field care (PFC) situations or to civilians in levels of lower care. Without access to prompt surgical intervention and treatment, potentially salvageable tissues are compromised, resulting in increases in both wound size and depth. Immediate debridement of necrotic tissue enhances survivability and mitigates the risks of burn shock, multiple organ failure, and infection. However, due to the difficulty of surgical removal of the burn eschar in PFC situations and lower levels of care, it is of utmost importance to develop alternative methods for burn stabilization. Studies have indicated that cerium(III) nitrate may be used to prolong the time before surgical intervention is required. The objective of this study was to incorporate cerium(III) nitrate into an electrospun dressing that could provide burst release. Select dosages of cerium(III) nitrate were dissolved with either pure solvent or polyethylene oxide (PEO) for coaxial or traditional electrospinning set-ups, respectively. The solutions were coaxially electrospun onto a rotating mandrel, resulting in a combined nonwoven mesh, and then compared to traditionally spun solutions. Dressings were evaluated for topography, morphology, and porosity using scanning electron microscopy and helium pycnometry. Additionally, cerium(III) loading efficiency, release rates, and cytocompatibility were evaluated in both static and dynamic environments. Imaging showed randomly aligned polymer nanofibers with fiber diameters of 1161 ± 210 nm and 1090 ± 250 nm for traditionally and coaxially spun PEO/cerium(III) nitrate dressings, respectively. Assay results indicated that the electrospun dressings contained cerium(III) nitrate properties, with the coaxially spun dressings containing 33% more cerium(III) nitrate than their traditionally spun counterparts. Finally, release studies revealed that PEO-based dressings released the entirety of their contents within the first hour with no detrimental cytocompatibility effects for coaxially-spun dressings. The study herein shows the successful incorporation of cerium(III) nitrate into an electrospun dressing.

3.
J Burn Care Res ; 41(5): 1015-1028, 2020 09 23.
Article En | MEDLINE | ID: mdl-32615590

Necrotic tissue generated by a thermal injury is typically removed via surgical debridement. However, this procedure is commonly associated with blood loss and the removal of viable healthy tissue. For some patients and contexts such as extended care on the battlefield, it would be preferable to remove devitalized tissue with a nonsurgical debridement agent. In this paper, a proprietary debridement gel (SN514) was evaluated for the ability to debride both deep-partial thickness (DPT) and full-thickness burn wounds using an established porcine thermal injury model. Burn wounds were treated daily for 4 days and visualized with both digital imaging and laser speckle imaging. Strip biopsies were taken at the end of the procedure. Histological analyses confirmed a greater debridement of the porcine burn wounds by SN514 than the vehicle-treated controls. Laser speckle imaging detected significant increases in the perfusion status after 4 days of SN514 treatment on DPT wounds. Importantly, histological analyses and clinical observations suggest that SN514 gel treatment did not damage uninjured tissue as no edema, erythema, or inflammation was observed on intact skin surrounding the treated wounds. A blinded evaluation of the digital images by a burn surgeon indicated that SN514 debrided more necrotic tissue than the control groups after 1, 2, and 3 days of treatment. Additionally, SN514 gel was evaluated using an in vitro burn model that used human discarded skin. Treatment of human burned tissue with SN514 gel resulted in greater than 80% weight reduction compared with untreated samples. Together, these data demonstrate that SN514 gel is capable of debriding necrotic tissue and suggest that SN514 gel could be a useful option for austere conditions, such as military multi-domain operations and prolonged field care scenarios.


Burns/therapy , Debridement/methods , Metalloproteases/therapeutic use , Animals , Burns/pathology , Disease Models, Animal , Female , Hydrogels , Swine , Wound Healing
4.
Nanoscale Res Lett ; 13(1): 88, 2018 Apr 02.
Article En | MEDLINE | ID: mdl-29611009

Normal wound healing is a highly complex process that requires the interplay of various growth factors and cell types. Despite advancements in biomaterials, only a few bioactive wound dressings reach the clinical setting. The purpose of this research was to explore the feasibility of electrospinning a novel nanofibrous chitosan (CS)-fibrinogen (Fb) scaffold capable of sustained release of platelet-derived growth factor (PDGF) for the promotion of fibroblast migration and wound healing. CS-Fb scaffolds were successfully electrospun using a dual-spinneret electrospinner and directly evaluated for their physical, chemical, and biological characteristics. CS-polyethylene/Fb scaffolds exhibited thinner fiber diameters than nanofibers electrospun from the individual components while demonstrating adequate mechanical properties and homogeneous polymer distribution. In addition, the scaffold demonstrated acceptable water transfer rates for wound healing applications. PDGF was successfully incorporated in the scaffold and maintained functional activity throughout the electrospinning process. Furthermore, released PDGF was effective at promoting fibroblast migration equivalent to a single 50 ng/mL dose of PDGF. The current study demonstrates that PDGF-loaded CS-Fb nanofibrous scaffolds possess characteristics that would be highly beneficial as novel bioactive dressings for enhancement of wound healing.

5.
J Immunol ; 185(11): 6819-30, 2010 Dec 01.
Article En | MEDLINE | ID: mdl-21048103

GRP94 (gp96)-peptide complexes can be internalized by APCs and their associated peptides cross-presented to yield activation of CD8(+) T cells. Investigations into the identity (or identities) of GRP94 surface receptors have yielded conflicting results, particularly with respect to CD91 (LRP1), which has been proposed to be essential for GRP94 recognition and uptake. To assess CD91 function in GRP94 surface binding and endocytosis, these parameters were examined in mouse embryonic fibroblast (MEF) cell lines whose expression of CD91 was either reduced via RNA interference or eliminated by genetic disruption of the CD91 locus. Reduction or loss of CD91 expression abrogated the binding and uptake of receptor-associated protein, an established CD91 ligand. Surface binding and uptake of an N-terminal domain of GRP94 (GRP94.NTD) was unaffected. GRP94.NTD surface binding was markedly suppressed after treatment of MEF cell lines with heparin, sodium chlorate, or heparinase II, demonstrating that heparin sulfate proteoglycans can function in GRP94.NTD surface binding. The role of CD91 in the cross-presentation of GRP94-associated peptides was examined in the DC2.4 dendritic cell line. In DC2.4 cells, which express CD91, GRP94.NTD-peptide cross-presentation was insensitive to the CD91 ligands receptor-associated protein or activated α(2)-macroglobulin and occurred primarily via a fluid-phase, rather than receptor-mediated, uptake pathway. These data clarify conflicting data on CD91 function in GRP94 surface binding, endocytosis, and peptide cross-presentation and identify a role for heparin sulfate proteoglycans in GRP94 surface binding.


Antigens, CD/physiology , Cross-Priming/immunology , Heat-Shock Proteins/physiology , Membrane Glycoproteins/metabolism , Peptide Fragments/immunology , Peptide Fragments/metabolism , Amino Acid Sequence , Animals , Antigens, CD/metabolism , Cell Line , Cell Membrane/immunology , Cell Membrane/metabolism , Dogs , Endocytosis/immunology , Heat-Shock Proteins/metabolism , Heparan Sulfate Proteoglycans/metabolism , Ligands , Low Density Lipoprotein Receptor-Related Protein-1 , Membrane Glycoproteins/biosynthesis , Membrane Glycoproteins/immunology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Molecular Sequence Data , Peptide Fragments/biosynthesis , Protein Binding/immunology , Receptors, LDL , Tumor Suppressor Proteins
6.
Dev Biol ; 339(2): 295-306, 2010 Mar 15.
Article En | MEDLINE | ID: mdl-20044986

GRP94, the endoplasmic reticulum Hsp90, is a metazoan-restricted chaperone essential for early development in mammals, yet dispensable for mammalian cell viability. This dichotomy suggests that GRP94 is required for the functional expression of secretory and/or membrane proteins that enable the integration of cells into tissues. To explore this hypothesis, we have identified the Drosophila ortholog of GRP94, Gp93, and report that Gp93 is an essential gene in Drosophila. Loss of zygotic Gp93 expression is late larval-lethal and causes prominent defects in the larval midgut, the sole endoderm-derived larval tissue. Gp93 mutant larvae display pronounced defects in the midgut epithelium, with aberrant copper cell structure, markedly reduced gut acidification, atypical septate junction structure, depressed gut motility, and deficits in intestinal nutrient uptake. The metabolic consequences of the loss of Gp93-expression are profound; Gp93 mutant larvae exhibit a starvation-like metabolic phenotype, including suppression of insulin signaling and extensive mobilization of amino acids and triglycerides. The defects in copper cell structure/function accompanying loss of Gp93 expression resemble those reported for mutations in labial, an endodermal homeotic gene required for copper cell specification, and alpha-spectrin, thus suggesting an essential role for Gp93 in the functional expression of secretory/integral membrane protein-encoding lab protein target genes and/or integral membrane protein(s) that interact with the spectrin cytoskeleton to confer epithelial membrane specialization.


Drosophila Proteins/metabolism , Drosophila/metabolism , Intestinal Mucosa/metabolism , Molecular Chaperones/metabolism , Animals , Drosophila/embryology , Drosophila/growth & development , Drosophila Proteins/genetics , Embryo, Nonmammalian/metabolism , Epithelial Cells/cytology , Epithelial Cells/metabolism , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , Homeostasis , Larva/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Molecular Chaperones/genetics , Mutation
7.
J Immunol ; 182(8): 4965-73, 2009 Apr 15.
Article En | MEDLINE | ID: mdl-19342676

Macrophages are important mediators of chronic inflammation and are prominent in the synovial lining and sublining of patients with rheumatoid arthritis (RA). Recently, we demonstrated increased TLR2 and TLR4 expression and increased response to microbial TLR2 and TLR4 ligands in macrophages from the joints of RA. The current study characterized the expression of the 96-kDa heat shock glycoprotein (gp96) in the joints of RA and its role as an endogenous TLR ligand to promote innate immunity in RA. gp96 was increased in RA compared with osteoarthritis and arthritis-free control synovial tissues. The expression of gp96 strongly correlated with inflammation and synovial lining thickness. gp96 was increased in synovial fluid from the joints of RA compared with disease controls. Recombinant gp96 was a potent activator of macrophages and the activation was mediated primarily through TLR2 signaling. The cellular response to gp96 was significantly stronger with RA synovial macrophages compared with peripheral blood monocytes from RA or healthy controls. The transcription of TLR2, TNF-alpha, and IL-8, but not TLR4, was significantly induced by gp96, and the induction was significantly greater in purified RA synovial macrophages. The expression of TLR2, but not TLR4, on synovial fluid macrophages strongly correlated with the level of gp96 in the synovial fluid. The present study documents the potential role of gp96 as an endogenous TLR2 ligand in RA and provides insight into the mechanism by which gp96 promotes the chronic inflammation of RA, identifying gp96 as a potential new therapeutic target.


Antigens, Neoplasm/metabolism , Arthritis, Rheumatoid/metabolism , Signal Transduction , Toll-Like Receptor 2/metabolism , Animals , Antigens, Neoplasm/genetics , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/pathology , Cell Line , Cell-Free System , Dogs , Gene Expression Regulation , Humans , Macrophages/metabolism , Synovial Membrane/metabolism , Toll-Like Receptor 2/genetics , Toll-Like Receptor 4/metabolism
...