Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Radiat Prot Dosimetry ; 200(7): 640-647, 2024 May 08.
Article En | MEDLINE | ID: mdl-38648184

According to UNSCEAR, cosmic radiation contributes to ~16% (0.39 mSv/y) of the total dose received by the public at sea level. The exposure to cosmic rays at a specific location is therefore a non-negligible parameter that contributes to the assessment of the overall public exposure to radiation. In this study, simulations were conducted with the Particle and Heavy Ion Transport code System, a Monte Carlo code, to determine the fluxes and effective dose due to cosmic rays received by the population of Douala. In minimum solar activity, the total effective dose considering the contribution of neutron, muon+, muon-, electron, positron and photon, was found to be 0.31 ± 0.02 mSv/y at the ground level. For maximum solar activity, it was found to be 0.27 ± 0.02 mSv/y at ground level. During maximum solar activity, galactic cosmic rays are reduced by solar flares and winds, resulting in an increase in the solar cosmic-ray component and a decrease in the galactic cosmic-ray component on Earth. This ultimately leads to a decrease in the total cosmic radiation on Earth. These results were found to be smaller than the UNSCEAR values, thus suggesting a good estimation for the population of Douala city located near the equatorial line. In fact, the cosmic radiation is more deflected at the equator than near the pole. Muons+ were found to be the main contributors to human exposure to cosmic radiation at ground level, with ~38% of the total effective dose due to cosmic exposure. However, electrons and positrons were found to be the less contributors to cosmic radiation exposure. As regards the obtained results, the population of Douala is not significantly exposed to cosmic radiation.


Cosmic Radiation , Heavy Ions , Monte Carlo Method , Radiation Dosage , Radiation Monitoring , Humans , Cameroon , Radiation Monitoring/methods , Solar Activity , Computer Simulation , Radiation Exposure/analysis
2.
MethodsX ; 4: 42-54, 2017.
Article En | MEDLINE | ID: mdl-28119824

To obtain high quality of results in gamma spectrometry, it is necessary to select the best HPGe detector for particular measurements, to calibrate energy and efficiency of gamma detector as accurate as possible. To achieve this aim, the convenient detector model and gamma source can be very useful. The purpose of this study was to evaluate the soil specific activity using two HPGe model (BEGe-6530 and GC0818-7600SL) by comparing the results of the two detectors and the technics used according to the detector type. The relative uncertainty activity concentration was calculated for 226Ra, 232Th and 40K. For broad energy germanium detector, BEGe-6530, the relative uncertainty concentration ranged from 2.85 to 3.09% with a mean of 2.99% for 226Ra, from 2.29 to 2.49% with a means of 2.36% for 232Th and from 3.47 to 22.37% with a mean of 12.52% for 40K. For GC0818-7600SL detector, it was ranged from 10.45 to 25.55% with a mean of 17.10% for 226Ra, from 2.54 to 3.56% with a means of 3.10% for 232Th and from 3.42 to 7.65% with a mean of 5.58% for 40K. The average report between GC0818-7600SL model and BEGe-6530 model was calculated and showed the mean value of 3.36. The main study was based on the following points: •Determination of The relative uncertainty activity concentration of 226Ra, 232Th and 40K•Determination of the relative uncertainty related to the radium equivalent activity to compare the performance of the two detection systems•Proved that the activity concentration determination in gamma spectrometry depended on the energy range emitted by a radionuclide. This study showed that the standard deviation measurement was less important to the result realized with BEGe-6530 HPGe model. Our findings were demonstrated that the results of the Broad Energy Germanium detector were more reliable.

...