Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Am J Pathol ; 192(2): 195-207, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34767812

RESUMEN

To catalyze severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) research, including development of novel interventive and preventive strategies, the progression of disease was characterized in a robust coronavirus disease 2019 (COVID-19) animal model. In this model, male and female golden Syrian hamsters were inoculated intranasally with SARS-CoV-2 USA-WA1/2020. Groups of inoculated and mock-inoculated uninfected control animals were euthanized at 2, 4, 7, 14, and 28 days after inoculation to track multiple clinical, pathology, virology, and immunology outcomes. SARS-CoV-2-inoculated animals consistently lost body weight during the first week of infection, had higher lung weights at terminal time points, and developed lung consolidation per histopathology and quantitative image analysis measurements. High levels of infectious virus and viral RNA were reliably present in the respiratory tract at days 2 and 4 after inoculation, corresponding with widespread necrosis and inflammation. At day 7, when the presence of infectious virus was rare, interstitial and alveolar macrophage infiltrates and marked reparative epithelial responses (type II hyperplasia) dominated in the lung. These lesions resolved over time, with only residual epithelial repair evident by day 28 after inoculation. The use of quantitative approaches to measure cellular and morphologic alterations in the lung provides valuable outcome measures for developing therapeutic and preventive interventions for COVID-19 using the hamster COVID-19 model.


Asunto(s)
COVID-19/patología , Animales , COVID-19/virología , Cricetinae , Modelos Animales de Enfermedad , Femenino , Pulmón/patología , Masculino , Mesocricetus , SARS-CoV-2
3.
J Comp Pathol ; 189: 1-7, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34886977

RESUMEN

An 11-year-old male common marmoset (Callithrix jacchus) presented with chronic, progressive weight loss and diarrhoea. Response to treatment with nutritional supplementation, antibiotics and immunosuppressants was modest and transient, and the animal was humanely euthanized. At necropsy, the proximal 8 cm of small intestine was diffusely pale with transmural thickening. The lungs contained coalescing tan, firm nodules measuring up to 4 mm in diameter. Histological examination revealed infiltrative mucinous adenocarcinoma of the duodenum with extensive metastases to the lungs, liver and left parapatellar adipose tissue. The mucinous matrix secreted by the primary and metastatic lesions was strongly periodic acid-Schiff positive. Warthin Starry staining for spirochaetes was negative. Pancytokeratin expression was attenuated in the primary tumour as well as in the metastases, which correlated to a poorly differentiated phenotype. To the authors' knowledge, this is the first report of a proximal duodenal adenocarcinoma with extensive metastatic disease in a common marmoset.


Asunto(s)
Adenocarcinoma , Neoplasias Duodenales , Adenocarcinoma/veterinaria , Animales , Callithrix , Neoplasias Duodenales/veterinaria , Hígado , Pulmón , Masculino
4.
JCI Insight ; 4(5)2019 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-30702442

RESUMEN

ß-2 Microglobulin (ß2M) is a molecular chaperone for the major histocompatibility class I (MHC I) complex, hemochromatosis factor protein (HFE), and the neonatal Fc receptor (FcRn), but ß2M may also have less understood chaperone-independent functions. Elevated plasma ß2M has a direct role in neurocognitive decline and is a risk factor for adverse cardiovascular events. ß2M mRNA is present in platelets at very high levels, and ß2M is part of the activated platelet releasate. In addition to their more well-studied thrombotic functions, platelets are important immune regulatory cells that release inflammatory molecules and contribute to leukocyte trafficking, activation, and differentiation. We have now found that platelet-derived ß2M is a mediator of monocyte proinflammatory differentiation through noncanonical TGFß receptor signaling. Circulating monocytes from mice lacking ß2M only in platelets (Plt-ß2M-/-) had a more proreparative monocyte phenotype, in part dependent on increased platelet-derived TGFß signaling in the absence of ß2M. Using a mouse myocardial infarction (MI) model, Plt-ß2M-/- mice had limited post-MI proinflammatory monocyte responses and, instead, demonstrated early proreparative monocyte differentiation, profibrotic myofibroblast responses, and a rapid decline in heart function compared with WT mice. These data demonstrate a potentially novel chaperone-independent, monocyte phenotype-regulatory function for platelet ß2M and that platelet-derived 2M and TGFß have opposing roles in monocyte differentiation that may be important in tissue injury responses.


Asunto(s)
Plaquetas/metabolismo , Monocitos/metabolismo , Microglobulina beta-2/metabolismo , Animales , Diferenciación Celular , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Chaperonas Moleculares , Activación Plaquetaria , Receptor Tipo II de Factor de Crecimiento Transformador beta/genética , Receptores de Factores de Crecimiento Transformadores beta/genética , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Transducción de Señal , Células THP-1 , Microglobulina beta-2/genética
5.
Immunol Res ; 65(5): 1089-1094, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28914425

RESUMEN

Platelet factor 4 (PF4) is a megakaryocyte-/platelet-derived chemokine with diverse functions as a regulator of vascular and immune biology. PF4 has a central role in vessel injury responses, innate immune cell responses, and T-helper cell differentiation. We have now discovered that PF4 has a direct role in B cell differentiation in the bone marrow. Mice lacking PF4 (PF4-/- mice) had fewer developing B cells in the bone marrow beginning after the pre-pro-B cell stage of differentiation. In vitro, PF4 increased the differentiation of hematopoietic progenitors to B cell lineage cells, indicating that PF4 has a direct effect on B cell differentiation. STAT5 activation is essential in early B cell development and PF4 increased the phosphorylation of STAT5. Taken together, these data demonstrate that PF4 has an important role in increasing B cell differentiation in the bone marrow environment.


Asunto(s)
Linfocitos B/inmunología , Linfocitos B/fisiología , Células de la Médula Ósea/fisiología , Factor Plaquetario 4/metabolismo , Animales , Diferenciación Celular , Linaje de la Célula , Células Cultivadas , Activación de Linfocitos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factor de Transcripción STAT5/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...