Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 254
1.
J Gastrointest Oncol ; 15(2): 755-767, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38756646

Background: Pancreatic ductal adenocarcinoma (pancreatic cancer) is often detected at late stages resulting in poor overall survival. To improve survival, more patients need to be diagnosed early when curative surgery is feasible. We aimed to identify circulating metabolites that could be used as early pancreatic cancer biomarkers. Methods: We performed metabolomics by liquid and gas chromatography-mass spectrometry in plasma samples from 82 future pancreatic cancer patients and 82 matched healthy controls within the Northern Sweden Health and Disease Study (NSHDS). Logistic regression was used to assess univariate associations between metabolites and pancreatic cancer risk. Least absolute shrinkage and selection operator (LASSO) logistic regression was used to design a metabolite-based risk score. We used receiver operating characteristic (ROC) analyses to assess the discriminative performance of the metabolite-based risk score. Results: Among twelve risk-associated metabolites with a nominal P value <0.05, we defined a risk score of three metabolites [indoleacetate, 3-hydroxydecanoate (10:0-OH), and retention index (RI): 2,745.4] using LASSO. A logistic regression model containing these three metabolites, age, sex, body mass index (BMI), smoking status, sample date, fasting status, and carbohydrate antigen 19-9 (CA 19-9) yielded an internal area under curve (AUC) of 0.784 [95% confidence interval (CI): 0.714-0.854] compared to 0.681 (95% CI: 0.597-0.764) for a model without these metabolites (P value =0.007). Seventeen metabolites were significantly associated with pancreatic cancer survival [false discovery rate (FDR) <0.1]. Conclusions: Indoleacetate, 3-hydroxydecanoate (10:0-OH), and RI: 2,745.4 were identified as the top candidate biomarkers for early detection. However, continued efforts are warranted to determine the usefulness of these metabolites as early pancreatic cancer biomarkers.

2.
JAMA ; 2024 Apr 07.
Article En | MEDLINE | ID: mdl-38583868

Importance: Randomized clinical trials of cancer screening typically use cancer-specific mortality as the primary end point. The incidence of stage III-IV cancer is a potential alternative end point that may accelerate completion of randomized clinical trials of cancer screening. Objective: To compare cancer-specific mortality with stage III-IV cancer as end points in randomized clinical trials of cancer screening. Design, Setting, and Participants: This meta-analysis included 41 randomized clinical trials of cancer screening conducted in Europe, North America, and Asia published through February 19, 2024. Data extracted included numbers of participants, cancer diagnoses, and cancer deaths in the intervention and comparison groups. For each clinical trial, the effect of screening was calculated as the percentage reduction between the intervention and comparison groups in the incidence of participants with cancer-specific mortality and stage III-IV cancer. Exposures: Randomization to a cancer screening test or to a comparison group in a clinical trial of cancer screening. Main Outcomes and Measures: End points of cancer-specific mortality and incidence of stage III-IV cancer were compared using Pearson correlation coefficients with 95% CIs, linear regression, and fixed-effects meta-analysis. Results: The included randomized clinical trials tested benefits of screening for breast (n = 6), colorectal (n = 11), lung (n = 12), ovarian (n = 4), prostate (n = 4), and other cancers (n = 4). Correlation between reductions in cancer-specific mortality and stage III-IV cancer varied by cancer type (I2 = 65%; P = .02). Correlation was highest for trials that screened for ovarian (Pearson ρ = 0.99 [95% CI, 0.51-1.00]) and lung (Pearson ρ = 0.92 [95% CI, 0.72-0.98]) cancers, moderate for breast cancer (Pearson ρ = 0.70 [95% CI, -0.26 to 0.96]), and weak for colorectal (Pearson ρ = 0.39 [95% CI, -0.27 to 0.80]) and prostate (Pearson ρ = -0.69 [95% CI, -0.99 to 0.81]) cancers. Slopes from linear regression were estimated as 1.15 for ovarian cancer, 0.75 for lung cancer, 0.40 for colorectal cancer, 0.28 for breast cancer, and -3.58 for prostate cancer, suggesting that a given magnitude of reduction in incidence of stage III-IV cancer produced different magnitudes of change in incidence of cancer-specific mortality (P for heterogeneity = .004). Conclusions and Relevance: In randomized clinical trials of cancer screening, incidence of late-stage cancer may be a suitable alternative end point to cancer-specific mortality for some cancer types, but is not suitable for others. These results have implications for clinical trials of multicancer screening tests.

3.
Nat Commun ; 15(1): 3621, 2024 Apr 29.
Article En | MEDLINE | ID: mdl-38684708

Circulating proteins can reveal key pathways to cancer and identify therapeutic targets for cancer prevention. We investigate 2,074 circulating proteins and risk of nine common cancers (bladder, breast, endometrium, head and neck, lung, ovary, pancreas, kidney, and malignant non-melanoma) using cis protein Mendelian randomisation and colocalization. We conduct additional analyses to identify adverse side-effects of altering risk proteins and map cancer risk proteins to drug targets. Here we find 40 proteins associated with common cancers, such as PLAUR and risk of breast cancer [odds ratio per standard deviation increment: 2.27, 1.88-2.74], and with high-mortality cancers, such as CTRB1 and pancreatic cancer [0.79, 0.73-0.85]. We also identify potential adverse effects of protein-altering interventions to reduce cancer risk, such as hypertension. Additionally, we report 18 proteins associated with cancer risk that map to existing drugs and 15 that are not currently under clinical investigation. In sum, we identify protein-cancer links that improve our understanding of cancer aetiology. We also demonstrate that the wider consequence of any protein-altering intervention on well-being and morbidity is required to interpret any utility of proteins as potential future targets for therapeutic prevention.


Neoplasms , Humans , Neoplasms/genetics , Female , Risk Factors , Mendelian Randomization Analysis , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/blood , Male , Blood Proteins/metabolism
4.
EBioMedicine ; 100: 104991, 2024 Feb.
Article En | MEDLINE | ID: mdl-38301482

BACKGROUND: Tumour-promoting inflammation is a "hallmark" of cancer and conventional epidemiological studies have reported links between various inflammatory markers and cancer risk. The causal nature of these relationships and, thus, the suitability of these markers as intervention targets for cancer prevention is unclear. METHODS: We meta-analysed 6 genome-wide association studies of circulating inflammatory markers comprising 59,969 participants of European ancestry. We then used combined cis-Mendelian randomization and colocalisation analysis to evaluate the causal role of 66 circulating inflammatory markers in risk of 30 adult cancers in 338,294 cancer cases and up to 1,238,345 controls. Genetic instruments for inflammatory markers were constructed using genome-wide significant (P < 5.0 × 10-8) cis-acting SNPs (i.e., in or ±250 kb from the gene encoding the relevant protein) in weak linkage disequilibrium (LD, r2 < 0.10). Effect estimates were generated using inverse-variance weighted random-effects models and standard errors were inflated to account for weak LD between variants with reference to the 1000 Genomes Phase 3 CEU panel. A false discovery rate (FDR)-corrected P-value ("q-value") <0.05 was used as a threshold to define "strong evidence" to support associations and 0.05 ≤ q-value < 0.20 to define "suggestive evidence". A colocalisation posterior probability (PPH4) >70% was employed to indicate support for shared causal variants across inflammatory markers and cancer outcomes. Findings were replicated in the FinnGen study and then pooled using meta-analysis. FINDINGS: We found strong evidence to support an association of genetically-proxied circulating pro-adrenomedullin concentrations with increased breast cancer risk (OR: 1.19, 95% CI: 1.10-1.29, q-value = 0.033, PPH4 = 84.3%) and suggestive evidence to support associations of interleukin-23 receptor concentrations with increased pancreatic cancer risk (OR: 1.42, 95% CI: 1.20-1.69, q-value = 0.055, PPH4 = 73.9%), prothrombin concentrations with decreased basal cell carcinoma risk (OR: 0.66, 95% CI: 0.53-0.81, q-value = 0.067, PPH4 = 81.8%), and interleukin-1 receptor-like 1 concentrations with decreased triple-negative breast cancer risk (OR: 0.92, 95% CI: 0.88-0.97, q-value = 0.15, PPH4 = 85.6%). These findings were replicated in pooled analyses with the FinnGen study. Though suggestive evidence was found to support an association of macrophage migration inhibitory factor concentrations with increased bladder cancer risk (OR: 2.46, 95% CI: 1.48-4.10, q-value = 0.072, PPH4 = 76.1%), this finding was not replicated when pooled with the FinnGen study. For 22 of 30 cancer outcomes examined, there was little evidence (q-value ≥0.20) that any of the 66 circulating inflammatory markers examined were associated with cancer risk. INTERPRETATION: Our comprehensive joint Mendelian randomization and colocalisation analysis of the role of circulating inflammatory markers in cancer risk identified potential roles for 4 circulating inflammatory markers in risk of 4 site-specific cancers. Contrary to reports from some prior conventional epidemiological studies, we found little evidence of association of circulating inflammatory markers with the majority of site-specific cancers evaluated. FUNDING: Cancer Research UK (C68933/A28534, C18281/A29019, PPRCPJT∖100005), World Cancer Research Fund (IIG_FULL_2020_022), National Institute for Health Research (NIHR202411, BRC-1215-20011), Medical Research Council (MC_UU_00011/1, MC_UU_00011/3, MC_UU_00011/6, and MC_UU_00011/4), Academy of Finland Project 326291, European Union's Horizon 2020 grant agreement no. 848158 (EarlyCause), French National Cancer Institute (INCa SHSESP20, 2020-076), Versus Arthritis (21173, 21754, 21755), National Institutes of Health (U19 CA203654), National Cancer Institute (U19CA203654).


Genome-Wide Association Study , Neoplasms , Adult , Humans , Mendelian Randomization Analysis , Risk , Neoplasms/epidemiology , Neoplasms/genetics , Inflammation/genetics , Polymorphism, Single Nucleotide
5.
Genome Med ; 16(1): 22, 2024 Feb 05.
Article En | MEDLINE | ID: mdl-38317189

BACKGROUND: Although polygenic risk score (PRS) has emerged as a promising tool for predicting cancer risk from genome-wide association studies (GWAS), the individual-level accuracy of lung cancer PRS and the extent to which its impact on subsequent clinical applications remains largely unexplored. METHODS: Lung cancer PRSs and confidence/credible interval (CI) were constructed using two statistical approaches for each individual: (1) the weighted sum of 16 GWAS-derived significant SNP loci and the CI through the bootstrapping method (PRS-16-CV) and (2) LDpred2 and the CI through posteriors sampling (PRS-Bayes), among 17,166 lung cancer cases and 12,894 controls with European ancestry from the International Lung Cancer Consortium. Individuals were classified into different genetic risk subgroups based on the relationship between their own PRS mean/PRS CI and the population level threshold. RESULTS: Considerable variances in PRS point estimates at the individual level were observed for both methods, with an average standard deviation (s.d.) of 0.12 for PRS-16-CV and a much larger s.d. of 0.88 for PRS-Bayes. Using PRS-16-CV, only 25.0% of individuals with PRS point estimates in the lowest decile of PRS and 16.8% in the highest decile have their entire 95% CI fully contained in the lowest and highest decile, respectively, while PRS-Bayes was unable to find any eligible individuals. Only 19% of the individuals were concordantly identified as having high genetic risk (> 90th percentile) using the two PRS estimators. An increased relative risk of lung cancer comparing the highest PRS percentile to the lowest was observed when taking the CI into account (OR = 2.73, 95% CI: 2.12-3.50, P-value = 4.13 × 10-15) compared to using PRS-16-CV mean (OR = 2.23, 95% CI: 1.99-2.49, P-value = 5.70 × 10-46). Improved risk prediction performance with higher AUC was consistently observed in individuals identified by PRS-16-CV CI, and the best performance was achieved by incorporating age, gender, and detailed smoking pack-years (AUC: 0.73, 95% CI = 0.72-0.74). CONCLUSIONS: Lung cancer PRS estimates using different methods have modest correlations at the individual level, highlighting the importance of considering individual-level uncertainty when evaluating the practical utility of PRS.


Genetic Risk Score , Lung Neoplasms , Humans , Lung Neoplasms/genetics , Bayes Theorem , Genome-Wide Association Study , Uncertainty , Risk Assessment , Risk Factors , Genetic Predisposition to Disease
6.
Prev Med ; 181: 107897, 2024 Apr.
Article En | MEDLINE | ID: mdl-38378124

BACKGROUND: Risk-tailored screening has emerged as a promising approach to optimise the balance of benefits and harms of existing population cancer screening programs. It tailors screening (e.g., eligibility, frequency, interval, test type) to individual risk rather than the current one-size-fits-all approach of most organised population screening programs. However, the implementation of risk-tailored cancer screening in the population is challenging as it requires a change of practice at multiple levels i.e., individual, provider, health system levels. This scoping review aims to synthesise current implementation considerations for risk-tailored cancer screening in the population, identifying barriers, facilitators, and associated implementation outcomes. METHODS: Relevant studies were identified via database searches up to February 2023. Results were synthesised using Tierney et al. (2020) guidance for evidence synthesis of implementation outcomes and a multilevel framework. RESULTS: Of 4138 titles identified, 74 studies met the inclusion criteria. Most studies in this review focused on the implementation outcomes of acceptability, feasibility, and appropriateness, reflecting the pre-implementation stage of most research to date. Only six studies included an implementation framework. The review identified consistent evidence that risk-tailored screening is largely acceptable across population groups, however reluctance to accept a reduction in screening frequency for low-risk informed by cultural norms, presents a major barrier. Limited studies were identified for cancer types other than breast cancer. CONCLUSIONS: Implementation strategies will need to address alternate models of delivery, education of health professionals, communication with the public, screening options for people at low risk of cancer, and inequity in outcomes across cancer types.


Breast Neoplasms , Early Detection of Cancer , Humans , Female , Health Personnel , Breast Neoplasms/diagnosis , Breast Neoplasms/prevention & control
7.
Cancer Epidemiol Biomarkers Prev ; 33(3): 389-399, 2024 03 01.
Article En | MEDLINE | ID: mdl-38180474

BACKGROUND: Clinical, molecular, and genetic epidemiology studies displayed remarkable differences between ever- and never-smoking lung cancer. METHODS: We conducted a stratified multi-population (European, East Asian, and African descent) association study on 44,823 ever-smokers and 20,074 never-smokers to identify novel variants that were missed in the non-stratified analysis. Functional analysis including expression quantitative trait loci (eQTL) colocalization and DNA damage assays, and annotation studies were conducted to evaluate the functional roles of the variants. We further evaluated the impact of smoking quantity on lung cancer risk for the variants associated with ever-smoking lung cancer. RESULTS: Five novel independent loci, GABRA4, intergenic region 12q24.33, LRRC4C, LINC01088, and LCNL1 were identified with the association at two or three populations (P < 5 × 10-8). Further functional analysis provided multiple lines of evidence suggesting the variants affect lung cancer risk through excessive DNA damage (GABRA4) or cis-regulation of gene expression (LCNL1). The risk of variants from 12 independent regions, including the well-known CHRNA5, associated with ever-smoking lung cancer was evaluated for never-smokers, light-smokers (packyear ≤ 20), and moderate-to-heavy-smokers (packyear > 20). Different risk patterns were observed for the variants among the different groups by smoking behavior. CONCLUSIONS: We identified novel variants associated with lung cancer in only ever- or never-smoking groups that were missed by prior main-effect association studies. IMPACT: Our study highlights the genetic heterogeneity between ever- and never-smoking lung cancer and provides etiologic insights into the complicated genetic architecture of this deadly cancer.


Lung Neoplasms , Humans , Lung Neoplasms/epidemiology , Lung Neoplasms/genetics , Smokers , Genome-Wide Association Study , Research Design , Smoking/adverse effects
8.
EBioMedicine ; 100: 104977, 2024 Feb.
Article En | MEDLINE | ID: mdl-38290287

BACKGROUND: Type 2 diabetes is associated with higher risk of several cancer types. However, the biological intermediates driving this relationship are not fully understood. As novel interventions for treating and managing type 2 diabetes become increasingly available, whether they also disrupt the pathways leading to increased cancer risk is currently unknown. We investigated the effect of a type 2 diabetes intervention, in the form of intentional weight loss, on circulating proteins associated with cancer risk to gain insight into potential mechanisms linking type 2 diabetes and adiposity with cancer development. METHODS: Fasting serum samples from participants with diabetes enrolled in the Diabetes Remission Clinical Trial (DiRECT) receiving the Counterweight-Plus weight-loss programme (intervention, N = 117, mean weight-loss 10 kg, 46% diabetes remission) or best-practice care by guidelines (control, N = 143, mean weight-loss 1 kg, 4% diabetes remission) were subject to proteomic analysis using the Olink Oncology-II platform (48% of participants were female; 52% male). To identify proteins which may be altered by the weight-loss intervention, the difference in protein levels between groups at baseline and 1 year was examined using linear regression. Mendelian randomization (MR) was performed to extend these results to evaluate cancer risk and elucidate possible biological mechanisms linking type 2 diabetes and cancer development. MR analyses were conducted using independent datasets, including large cancer meta-analyses, UK Biobank, and FinnGen, to estimate potential causal relationships between proteins modified during intentional weight loss and the risk of colorectal, breast, endometrial, gallbladder, liver, and pancreatic cancers. FINDINGS: Nine proteins were modified by the intervention: glycoprotein Nmb; furin; Wnt inhibitory factor 1; toll-like receptor 3; pancreatic prohormone; erb-b2 receptor tyrosine kinase 2; hepatocyte growth factor; endothelial cell specific molecule 1 and Ret proto-oncogene (Holm corrected P-value <0.05). Mendelian randomization analyses indicated a causal relationship between predicted circulating furin and glycoprotein Nmb on breast cancer risk (odds ratio (OR) = 0.81, 95% confidence interval (CI) = 0.67-0.99, P-value = 0.03; and OR = 0.88, 95% CI = 0.78-0.99, P-value = 0.04 respectively), though these results were not supported in sensitivity analyses examining violations of MR assumptions. INTERPRETATION: Intentional weight loss among individuals with recently diagnosed diabetes may modify levels of cancer-related proteins in serum. Further evaluation of the proteins identified in this analysis could reveal molecular pathways that mediate the effect of adiposity and type 2 diabetes on cancer risk. FUNDING: The main sources of funding for this work were Diabetes UK, Cancer Research UK, World Cancer Research Fund, and Wellcome.


Diabetes Mellitus, Type 2 , Neoplasms , Humans , Male , Female , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/therapy , Furin , Proteomics , Obesity/complications , Obesity/therapy , Weight Loss , Glycoproteins , Mendelian Randomization Analysis , Neoplasms/etiology
9.
Eur J Epidemiol ; 39(2): 147-159, 2024 Feb.
Article En | MEDLINE | ID: mdl-38180593

In this study, we aimed to provide novel evidence on the impact of changing lifestyle habits on cancer risk. In the EPIC cohort, 295,865 middle-aged participants returned a lifestyle questionnaire at baseline and during follow-up. At both timepoints, we calculated a healthy lifestyle index (HLI) score based on cigarette smoking, alcohol consumption, body mass index and physical activity. HLI ranged from 0 (most unfavourable) to 16 (most favourable). We estimated the association between HLI change and risk of lifestyle-related cancers-including cancer of the breast, lung, colorectum, stomach, liver, cervix, oesophagus, bladder, and others-using Cox regression models. We reported hazard ratios (HR) with 95% confidence intervals (CI). Median time between the two questionnaires was 5.7 years, median age at follow-up questionnaire was 59 years. After the follow-up questionnaire, we observed 14,933 lifestyle-related cancers over a median follow-up of 7.8 years. Each unit increase in the HLI score was associated with 4% lower risk of lifestyle-related cancers (HR 0.96; 95%CI 0.95-0.97). Among participants in the top HLI third at baseline (HLI > 11), those in the bottom third at follow-up (HLI ≤ 9) had 21% higher risk of lifestyle-related cancers (HR 1.21; 95%CI 1.07-1.37) than those remaining in the top third. Among participants in the bottom HLI third at baseline, those in the top third at follow-up had 25% lower risk of lifestyle-related cancers (HR 0.75; 95%CI 0.65-0.86) than those remaining in the bottom third. These results indicate that lifestyle changes in middle age may have a significant impact on cancer risk.


Life Style , Neoplasms , Female , Middle Aged , Humans , Prospective Studies , Nutritional Status , Healthy Lifestyle , Neoplasms/epidemiology , Neoplasms/etiology
10.
Br J Cancer ; 130(1): 114-124, 2024 01.
Article En | MEDLINE | ID: mdl-38057395

BACKGROUND: The association of fitness with cancer risk is not clear. METHODS: We used Cox proportional hazards models to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) for risk of lung, colorectal, endometrial, breast, and prostate cancer in a subset of UK Biobank participants who completed a submaximal fitness test in 2009-12 (N = 72,572). We also investigated relationships using two-sample Mendelian randomisation (MR), odds ratios (ORs) were estimated using the inverse-variance weighted method. RESULTS: After a median of 11 years of follow-up, 4290 cancers of interest were diagnosed. A 3.5 ml O2⋅min-1⋅kg-1 total-body mass increase in fitness (equivalent to 1 metabolic equivalent of task (MET), approximately 0.5 standard deviation (SD)) was associated with lower risks of endometrial (HR = 0.81, 95% CI: 0.73-0.89), colorectal (0.94, 0.90-0.99), and breast cancer (0.96, 0.92-0.99). In MR analyses, a 0.5 SD increase in genetically predicted O2⋅min-1⋅kg-1 fat-free mass was associated with a lower risk of breast cancer (OR = 0.92, 95% CI: 0.86-0.98). After adjusting for adiposity, both the observational and genetic associations were attenuated. DISCUSSION: Higher fitness levels may reduce risks of endometrial, colorectal, and breast cancer, though relationships with adiposity are complex and may mediate these relationships. Increasing fitness, including via changes in body composition, may be an effective strategy for cancer prevention.


Breast Neoplasms , Cardiorespiratory Fitness , Colorectal Neoplasms , Male , Humans , Biological Specimen Banks , UK Biobank , Breast Neoplasms/epidemiology , Breast Neoplasms/genetics , Colorectal Neoplasms/epidemiology , Colorectal Neoplasms/genetics , Colorectal Neoplasms/diagnosis , Risk Factors
11.
Cancer ; 130(6): 913-926, 2024 03 15.
Article En | MEDLINE | ID: mdl-38055287

BACKGROUND: Although the associations between genetic variations and lung cancer risk have been explored, the epigenetic consequences of DNA methylation in lung cancer development are largely unknown. Here, the genetically predicted DNA methylation markers associated with non-small cell lung cancer (NSCLC) risk by a two-stage case-control design were investigated. METHODS: The genetic prediction models for methylation levels based on genetic and methylation data of 1595 subjects from the Framingham Heart Study were established. The prediction models were applied to a fixed-effect meta-analysis of screening data sets with 27,120 NSCLC cases and 27,355 controls to identify the methylation markers, which were then replicated in independent data sets with 7844 lung cancer cases and 421,224 controls. Also performed was a multi-omics functional annotation for the identified CpGs by integrating genomics, epigenomics, and transcriptomics and investigation of the potential regulation pathways. RESULTS: Of the 29,894 CpG sites passing the quality control, 39 CpGs associated with NSCLC risk (Bonferroni-corrected p ≤ 1.67 × 10-6 ) were originally identified. Of these, 16 CpGs remained significant in the validation stage (Bonferroni-corrected p ≤ 1.28 × 10-3 ), including four novel CpGs. Multi-omics functional annotation showed nine of 16 CpGs were potentially functional biomarkers for NSCLC risk. Thirty-five genes within a 1-Mb window of 12 CpGs that might be involved in regulatory pathways of NSCLC risk were identified. CONCLUSIONS: Sixteen promising DNA methylation markers associated with NSCLC were identified. Changes of the methylation level at these CpGs might influence the development of NSCLC by regulating the expression of genes nearby. PLAIN LANGUAGE SUMMARY: The epigenetic consequences of DNA methylation in lung cancer development are still largely unknown. This study used summary data of large-scale genome-wide association studies to investigate the associations between genetically predicted levels of methylation biomarkers and non-small cell lung cancer risk at the first time. This study looked at how well larotrectinib worked in adult patients with sarcomas caused by TRK fusion proteins. These findings will provide a unique insight into the epigenetic susceptibility mechanisms of lung cancer.


Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Adult , Humans , Carcinoma, Non-Small-Cell Lung/genetics , DNA Methylation , Lung Neoplasms/genetics , Genome-Wide Association Study , Epigenesis, Genetic , Biomarkers , CpG Islands
12.
Cancer Res ; 84(4): 616-625, 2024 02 15.
Article En | MEDLINE | ID: mdl-38117513

Cigarette smoke, containing both nicotine and carcinogens, causes lung cancer. However, not all smokers develop lung cancer, highlighting the importance of the interaction between host susceptibility and environmental exposure in tumorigenesis. Here, we aimed to delineate the interaction between metabolizing ability of tobacco carcinogens and smoking intensity in mediating genetic susceptibility to smoking-related lung tumorigenesis. Single-variant and gene-based associations of 43 tobacco carcinogen-metabolizing genes with lung cancer were analyzed using summary statistics and individual-level genetic data, followed by causal inference of Mendelian randomization, mediation analysis, and structural equation modeling. Cigarette smoke-exposed cell models were used to detect gene expression patterns in relation to specific alleles. Data from the International Lung Cancer Consortium (29,266 cases and 56,450 controls) and UK Biobank (2,155 cases and 376,329 controls) indicated that the genetic variant rs56113850 C>T located in intron 4 of CYP2A6 was significantly associated with decreased lung cancer risk among smokers (OR = 0.88, 95% confidence interval = 0.85-0.91, P = 2.18 × 10-16), which might interact (Pinteraction = 0.028) with and partially be mediated (ORindirect = 0.987) by smoking status. Smoking intensity accounted for 82.3% of the effect of CYP2A6 activity on lung cancer risk but entirely mediated the genetic effect of rs56113850. Mechanistically, the rs56113850 T allele rescued the downregulation of CYP2A6 caused by cigarette smoke exposure, potentially through preferential recruitment of transcription factor helicase-like transcription factor. Together, this study provides additional insights into the interplay between host susceptibility and carcinogen exposure in smoking-related lung tumorigenesis. SIGNIFICANCE: The causal pathway connecting CYP2A6 genetic variability and activity, cigarette consumption, and lung cancer susceptibility in smokers highlights the need for behavior modification interventions based on host susceptibility for cancer prevention.


Lung Neoplasms , Tobacco Products , Humans , Lung Neoplasms/etiology , Lung Neoplasms/genetics , Cytochrome P-450 CYP2A6/genetics , Cytochrome P-450 CYP2A6/metabolism , Carcinogens/toxicity , Carcinogenesis , Transcription Factors , Smoking/adverse effects
13.
Br J Cancer ; 130(4): 620-627, 2024 03.
Article En | MEDLINE | ID: mdl-38135714

OBJECTIVE: Current breast cancer risk prediction scores and algorithms can potentially be further improved by including molecular markers. To this end, we studied the association of circulating plasma proteins using Proximity Extension Assay (PEA) with incident breast cancer risk. SUBJECTS: In this study, we included 1577 women participating in the prospective KARMA mammographic screening cohort. RESULTS: In a targeted panel of 164 proteins, we found 8 candidates nominally significantly associated with short-term breast cancer risk (P < 0.05). Similarly, in an exploratory panel consisting of 2204 proteins, 115 were found nominally significantly associated (P < 0.05). However, none of the identified protein levels remained significant after adjustment for multiple testing. This lack of statistically significant findings was not due to limited power, but attributable to the small effect sizes observed even for nominally significant proteins. Similarly, adding plasma protein levels to established risk factors did not improve breast cancer risk prediction accuracy. CONCLUSIONS: Our results indicate that the levels of the studied plasma proteins captured by the PEA method are unlikely to offer additional benefits for risk prediction of short-term overall breast cancer risk but could provide interesting insights into the biological basis of breast cancer in the future.


Breast Neoplasms , Female , Humans , Breast Neoplasms/diagnosis , Prospective Studies , Proteomics , Mammography/methods , Risk Factors , Blood Proteins
14.
Int J Epidemiol ; 53(1)2024 Feb 01.
Article En | MEDLINE | ID: mdl-38124529

BACKGROUND: People with cancer experience high rates of venous thromboembolism (VTE). Risk of subsequent cancer is also increased in people experiencing their first VTE. The causal mechanisms underlying this association are not completely understood, and it is unknown whether VTE is itself a risk factor for cancer. METHODS: We used data from large genome-wide association study meta-analyses to perform bidirectional Mendelian randomization analyses to estimate causal associations between genetic liability to VTE and risk of 18 different cancers. RESULTS: We found no conclusive evidence that genetic liability to VTE was causally associated with an increased incidence of cancer, or vice versa. We observed an association between liability to VTE and pancreatic cancer risk [odds ratio for pancreatic cancer: 1.23 (95% confidence interval: 1.08-1.40) per log-odds increase in VTE risk, P = 0.002]. However, sensitivity analyses revealed this association was predominantly driven by a variant proxying non-O blood group, with inadequate evidence to suggest a causal relationship. CONCLUSIONS: These findings do not support the hypothesis that genetic liability to VTE is a cause of cancer. Existing observational epidemiological associations between VTE and cancer are therefore more likely to be driven by pathophysiological changes which occur in the setting of active cancer and anti-cancer treatments. Further work is required to explore and synthesize evidence for these mechanisms.


Pancreatic Neoplasms , Venous Thromboembolism , Humans , Venous Thromboembolism/epidemiology , Venous Thromboembolism/genetics , Mendelian Randomization Analysis , Genome-Wide Association Study , Risk Factors , Pancreatic Neoplasms/epidemiology , Pancreatic Neoplasms/genetics
15.
Eur Urol Oncol ; 2023 Nov 08.
Article En | MEDLINE | ID: mdl-37949729

BACKGROUND: Human papillomavirus (HPV) infection is a risk factor for the development of penile squamous cell carcinoma (PSCC). It remains inconclusive whether HPV-related PSCC has a different prognosis from non-HPV-related PSCC. OBJECTIVE: To investigate the relationship between HPV status and survival as well as temporal changes in the proportion of HPV-related PSCC. DESIGN, SETTING, AND PARTICIPANTS: A retrospective cohort of 277 patients treated in Norway between 1973 and 2022 was investigated for HPV DNA in tumor tissue. Clinicopathological variables and disease course were registered. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Kaplan-Meier curves and Cox regression were used to investigate the determinants of cancer-specific survival (CSS). The chi-square test for trend in proportions enabled investigation of temporal changes in the HPV-related proportion of PSCC patients treated in Western Norway (n = 211). RESULTS AND LIMITATIONS: HPV DNA was detected in tumor tissue from 131 (47%) patients. Stratified by HPV status, 5-yr CSS did not differ between groups (p = 0.37). When investigating only node-positive patients, however, presence of HPV DNA was an independent predictor of better survival in multivariable Cox regression after adjustment for age, nodal stage, and adjuvant therapy (hazard ratio 0.54, 95% confidence interval: [0.30-0.99], p = 0.04). In cases from Western Norway, an increasing proportion of HPV-related cases over time was found (p = 0.01). The main limitation is the retrospective study design. CONCLUSIONS: HPV DNA in tumor tissue was associated with significantly better CSS for node-positive patients. The proportion of HPV DNA-positive PSCC has increased significantly in Western Norway over the past 50 yr. PATIENT SUMMARY: We investigated the impact of human papillomavirus (HPV) on the survival of penile cancer patients treated over a 50-yr period in Norway. We found that for patients with lymph node metastasis, survival was better for HPV-related cases. We also found that the proportion of cases due to HPV has increased in Western Norway.

16.
Nat Commun ; 14(1): 7680, 2023 Nov 24.
Article En | MEDLINE | ID: mdl-37996402

Biomarkers for early detection of breast cancer may complement population screening approaches to enable earlier and more precise treatment. The blood proteome is an important source for biomarker discovery but so far, few proteins have been identified with breast cancer risk. Here, we measure 2929 unique proteins in plasma from 598 women selected from the Karolinska Mammography Project to explore the association between protein levels, clinical characteristics, and gene variants, and to identify proteins with a causal role in breast cancer. We present 812 cis-acting protein quantitative trait loci for 737 proteins which are used as instruments in Mendelian randomisation analyses of breast cancer risk. Of those, we present five proteins (CD160, DNPH1, LAYN, LRRC37A2 and TLR1) that show a potential causal role in breast cancer risk with confirmatory results in independent cohorts. Our study suggests that these proteins should be further explored as biomarkers and potential drug targets in breast cancer.


Breast Neoplasms , Humans , Female , Breast Neoplasms/diagnosis , Breast Neoplasms/genetics , Biomarkers , Mammography , Phenotype , Blood Proteins/genetics , Mendelian Randomization Analysis/methods , Genome-Wide Association Study , Polymorphism, Single Nucleotide , Lectins, C-Type/genetics
17.
medRxiv ; 2023 Sep 22.
Article En | MEDLINE | ID: mdl-37790472

Background: Understanding the role of circulating proteins in prostate cancer risk can reveal key biological pathways and identify novel targets for cancer prevention. Methods: We investigated the association of 2,002 genetically predicted circulating protein levels with risk of prostate cancer overall, and of aggressive and early onset disease, using cis-pQTL Mendelian randomization (MR) and colocalization. Findings for proteins with support from both MR, after correction for multiple-testing, and colocalization were replicated using two independent cancer GWAS, one of European and one of African ancestry. Proteins with evidence of prostate-specific tissue expression were additionally investigated using spatial transcriptomic data in prostate tumor tissue to assess their role in tumor aggressiveness. Finally, we mapped risk proteins to drug and ongoing clinical trials targets. Results: We identified 20 proteins genetically linked to prostate cancer risk (14 for overall [8 specific], 7 for aggressive [3 specific], and 8 for early onset disease [2 specific]), of which a majority were novel and replicated. Among these were proteins associated with aggressive disease, such as PPA2 [Odds Ratio (OR) per 1 SD increment = 2.13, 95% CI: 1.54-2.93], PYY [OR = 1.87, 95% CI: 1.43-2.44] and PRSS3 [OR = 0.80, 95% CI: 0.73-0.89], and those associated with early onset disease, including EHPB1 [OR = 2.89, 95% CI: 1.99-4.21], POGLUT3 [OR = 0.76, 95% CI: 0.67-0.86] and TPM3 [OR = 0.47, 95% CI: 0.34-0.64]. We confirm an inverse association of MSMB with prostate cancer overall [OR = 0.81, 95% CI: 0.80-0.82], and also find an inverse association with both aggressive [OR = 0.84, 95% CI: 0.82-0.86] and early onset disease [OR = 0.71, 95% CI: 0.68-0.74]. Using spatial transcriptomics data, we identified MSMB as the genome-wide top-most predictive gene to distinguish benign regions from high grade cancer regions that had five-fold lower MSMB expression. Additionally, ten proteins that were associated with prostate cancer risk mapped to existing therapeutic interventions. Conclusion: Our findings emphasize the importance of proteomics for improving our understanding of prostate cancer etiology and of opportunities for novel therapeutic interventions. Additionally, we demonstrate the added benefit of in-depth functional analyses to triangulate the role of risk proteins in the clinical aggressiveness of prostate tumors. Using these integrated methods, we identify a subset of risk proteins associated with aggressive and early onset disease as priorities for investigation for the future prevention and treatment of prostate cancer.

18.
Cancer Epidemiol Biomarkers Prev ; 32(11): 1644-1650, 2023 11 01.
Article En | MEDLINE | ID: mdl-37668600

BACKGROUND: We evaluated the temporal association between kidney function, assessed by estimated glomerular filtration rate (eGFR), and the risk of incident renal cell carcinoma (RCC). We also evaluated whether eGFR could improve RCC risk discrimination beyond established risk factors. METHODS: We analyzed the UK Biobank cohort, including 463,178 participants of whom 1,447 were diagnosed with RCC during 5,696,963 person-years of follow-up. We evaluated the temporal association between eGFR and RCC risk using flexible parametric survival models, adjusted for C-reactive protein and RCC risk factors. eGFR was calculated from creatinine and cystatin C levels. RESULTS: Lower eGFR, an indication of poor kidney function, was associated with higher RCC risk when measured up to 5 years prior to diagnosis. The RCC HR per SD decrease in eGFR when measured 1 year before diagnosis was 1.26 [95% confidence interval (95% CI), 1.16-1.37], and 1.11 (95% CI, 1.05-1.17) when measured 5 years before diagnosis. Adding eGFR to the RCC risk model provided a small improvement in risk discrimination 1 year before diagnosis with an AUC of 0.73 (95% CI, 0.67-0.84) compared with the published model (0.69; 95% CI, 0.63-0.79). CONCLUSIONS: This study demonstrated that kidney function markers are associated with RCC risk, but the nature of these associations are consistent with reversed causality. Markers of kidney function provided limited improvements in RCC risk discrimination beyond established risk factors. IMPACT: eGFR may be of potential use to identify individuals in the extremes of the risk distribution.


Carcinoma, Renal Cell , Kidney Neoplasms , Renal Insufficiency, Chronic , Humans , Carcinoma, Renal Cell/epidemiology , Glomerular Filtration Rate/physiology , Kidney , Risk Factors , Kidney Neoplasms/epidemiology , Creatinine , Renal Insufficiency, Chronic/complications
19.
JCI Insight ; 8(19)2023 10 09.
Article En | MEDLINE | ID: mdl-37651185

Genetic and metabolic changes in tissue and blood are reported to occur several years before glioma diagnosis. Since gliomas are currently detected late, a liquid biopsy for early detection could affect the quality of life and prognosis of patients. Here, we present a nested case-control study of 550 prediagnostic glioma cases and 550 healthy controls from the Northern Sweden Health and Disease study (NSHDS) and the European Prospective Investigation into Cancer and Nutrition (EPIC) study. We identified 93 significantly altered metabolites related to glioma development up to 8 years before diagnosis. Out of these metabolites, a panel of 20 selected metabolites showed strong disease correlation and a consistent progression pattern toward diagnosis in both the NSHDS and EPIC cohorts, and they separated future cases from controls independently of biological sex. The blood metabolite panel also successfully separated both lower-grade glioma and glioblastoma cases from controls, up to 8 years before diagnosis in patients within the NSHDS cohort and up to 2 years before diagnosis in EPIC. Pathway enrichment analysis detected metabolites related to the TCA cycle, Warburg effect, gluconeogenesis, and cysteine, pyruvate, and tyrosine metabolism as the most affected.


Glioblastoma , Glioma , Humans , Prospective Studies , Case-Control Studies , Quality of Life , Glioma/genetics , Glioblastoma/pathology
20.
Hum Mol Genet ; 32(18): 2842-2855, 2023 09 05.
Article En | MEDLINE | ID: mdl-37471639

Pulmonary surfactant is a lipoprotein synthesized and secreted by alveolar type II cells in lung. We evaluated the associations between 200,139 single nucleotide polymorphisms (SNPs) of 40 surfactant-related genes and lung cancer risk using genotyped data from two independent lung cancer genome-wide association studies. Discovery data included 18,082 cases and 13,780 controls of European ancestry. Replication data included 1,914 cases and 3,065 controls of European descent. Using multivariate logistic regression, we found novel SNPs in surfactant-related genes CTSH [rs34577742 C > T, odds ratio (OR) = 0.90, 95% confidence interval (CI) = 0.89-0.93, P = 7.64 × 10-9] and SFTA2 (rs3095153 G > A, OR = 1.16, 95% CI = 1.10-1.21, P = 1.27 × 10-9) associated with overall lung cancer in the discovery data and validated in an independent replication data-CTSH (rs34577742 C > T, OR = 0.88, 95% CI = 0.80-0.96, P = 5.76 × 10-3) and SFTA2 (rs3095153 G > A, OR = 1.14, 95% CI = 1.01-1.28, P = 3.25 × 10-2). Among ever smokers, we found SNPs in CTSH (rs34577742 C > T, OR = 0.89, 95% CI = 0.85-0.92, P = 1.94 × 10-7) and SFTA2 (rs3095152 G > A, OR = 1.20, 95% CI = 1.14-1.27, P = 4.25 × 10-11) associated with overall lung cancer in the discovery data and validated in the replication data-CTSH (rs34577742 C > T, OR = 0.88, 95% CI = 0.79-0.97, P = 1.64 × 10-2) and SFTA2 (rs3095152 G > A, OR = 1.15, 95% CI = 1.01-1.30, P = 3.81 × 10-2). Subsequent transcriptome-wide association study using expression weights from a lung expression quantitative trait loci study revealed genes most strongly associated with lung cancer are CTSH (PTWAS = 2.44 × 10-4) and SFTA2 (PTWAS = 2.32 × 10-6).


Lung Neoplasms , Pulmonary Surfactants , Humans , Genome-Wide Association Study , Lung/metabolism , Genotype , Pulmonary Surfactants/metabolism , Surface-Active Agents/metabolism , Polymorphism, Single Nucleotide , Genetic Predisposition to Disease , Cathepsin H/genetics , Cathepsin H/metabolism
...