Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 1 de 1
1.
Biol Reprod ; 2024 Jun 07.
Article En | MEDLINE | ID: mdl-38847481

BACKGROUND: Perfluoroalkyl and poly-fluoroalkyl substances (PFAS) are pervasive environmental pollutants and emerging risk factors for reproductive health. Although epidemiological evidence supports the link between these substances and male infertility, their specific effects on male fertility remain poorly understood. OBJECTIVES: Investigate the effect of perfluorooctane sulfonic acid (PFOS), the most prevalent and prominent PFAS, on bull sperm protein phosphorylation, a post-translational modification process governing sperm functionality and fertility. METHODS: We exposed bull sperm to PFOS at 10 µM (average population level) and 100 µM (high-exposure level), and analyzed global proteome and phosphoproteome profile by TMT labeling and NanoLC-MS/MS. We also measured sperm fertility functions by flow cytometry. RESULTS: PFOS at 10 µM altered sperm proteins linked to spermatogenesis and chromatin condensation, while at 100 µM, PFOS affected proteins associated with motility and fertility. We detected 299 phosphopeptides from 116 proteins, with 45 exhibiting differential expression between control and PFOS groups. PFOS dysregulated phosphorylation of key proteins (ACRBP, PRKAR2A, RAB2B, SPAG8, TUBB4B, ZPBP, and C2CD6) involved in sperm capacitation, acrosome reaction, sperm-egg interaction, and fertilization. PFOS also affected phosphorylation of other proteins (AQP7, HSBP9, IL4I1, PRKAR1A, and CCT8L2) related to sperm stress resistance and cryotolerance. Notably, 4 proteins (PRM1, ACRBP, TSSK1B, and CFAP45) exhibited differential regulation at both the proteomic and phosphoproteomic levels. Flow cytometric analysis confirmed that PFOS increased protein phosphorylation in sperm as well as reduced sperm motility, viability, calcium, and membrane potential and increased mitochondrial ROS in a dose-dependent manner. CONCLUSIONS: This study shows that PFOS exposure adversely impacts phosphorylation of proteins critical for bull sperm function and fertilization. Moreover, the concentration of PFOS influences the severity of these effects. The comprehensive bull sperm phosphoproteomics data from this study can help us understand the molecular mechanisms of environmental exposure-related male infertility.

...