Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
J Am Soc Nephrol ; 34(5): 772-792, 2023 05 01.
Article En | MEDLINE | ID: mdl-36758124

SIGNIFICANCE STATEMENT: AKI is a major clinical complication leading to high mortality, but intensive research over the past decades has not led to targeted preventive or therapeutic measures. In rodent models, caloric restriction (CR) and transient hypoxia significantly prevent AKI and a recent comparative transcriptome analysis of murine kidneys identified kynureninase (KYNU) as a shared downstream target. The present work shows that KYNU strongly contributes to CR-mediated protection as a key player in the de novo nicotinamide adenine dinucleotide biosynthesis pathway. Importantly, the link between CR and NAD+ biosynthesis could be recapitulated in a human cohort. BACKGROUND: Clinical practice lacks strategies to treat AKI. Interestingly, preconditioning by hypoxia and caloric restriction (CR) is highly protective in rodent AKI models. However, the underlying molecular mechanisms of this process are unknown. METHODS: Kynureninase (KYNU) knockout mice were generated by Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and comparative transcriptome, proteome and metabolite analyses of murine kidneys pre- and post-ischemia-reperfusion injury in the context of CR or ad libitum diet were performed. In addition, acetyl-lysin enrichment and mass spectrometry were used to assess protein acetylation. RESULTS: We identified KYNU as a downstream target of CR and show that KYNU strongly contributes to the protective effect of CR. The KYNU-dependent de novo nicotinamide adenine dinucleotide (NAD+) biosynthesis pathway is necessary for CR-associated maintenance of NAD+ levels. This finding is associated with reduced protein acetylation in CR-treated animals, specifically affecting enzymes in energy metabolism. Importantly, the effect of CR on de novo NAD+ biosynthesis pathway metabolites can be recapitulated in humans. CONCLUSIONS: CR induces the de novo NAD+ synthesis pathway in the context of IRI and is essential for its full nephroprotective potential. Differential protein acetylation may be the molecular mechanism underlying the relationship of NAD+, CR, and nephroprotection.


Acute Kidney Injury , Reperfusion Injury , Humans , Mice , Animals , NAD/metabolism , Caloric Restriction , Reperfusion Injury/prevention & control , Acute Kidney Injury/metabolism , Hypoxia
2.
Kidney Int ; 102(3): 560-576, 2022 09.
Article En | MEDLINE | ID: mdl-35654224

Acute kidney injury is a frequent complication in the clinical setting and associated with significant morbidity and mortality. Preconditioning with short-term caloric restriction is highly protective against kidney injury in rodent ischemia reperfusion injury models. However, the underlying mechanisms are unknown hampering clinical translation. Here, we examined the molecular basis of caloric restriction-mediated protection to elucidate the principles of kidney stress resistance. Analysis of an RNAseq dataset after caloric restriction identified Cyp4a12a, a cytochrome exclusively expressed in male mice, to be strongly downregulated after caloric restriction. Kidney ischemia reperfusion injury robustly induced acute kidney injury in male mice and this damage could be markedly attenuated by pretreatment with caloric restriction. In females, damage was significantly less pronounced and preconditioning with caloric restriction had only little effect. Tissue concentrations of the metabolic product of Cyp4a12a, 20-hydroxyeicosatetraenoic acid (20-HETE), were found to be significantly reduced by caloric restriction. Conversely, intraperitoneal supplementation of 20-HETE in preconditioned males partly abrogated the protective potential of caloric restriction. Interestingly, this effect was accompanied by a partial reversal of caloric restriction--induced changes in protein but not RNA expression pointing towards inflammation, endoplasmic reticulum stress and lipid metabolism. Thus, our findings provide an insight into the mechanisms underlying kidney protection by caloric restriction. Hence, understanding the mediators of preconditioning is an important prerequisite for moving towards translation to the clinical setting.


Acute Kidney Injury , Reperfusion Injury , Acute Kidney Injury/etiology , Acute Kidney Injury/metabolism , Acute Kidney Injury/prevention & control , Animals , Caloric Restriction , Hydroxyeicosatetraenoic Acids/metabolism , Hydroxyeicosatetraenoic Acids/pharmacology , Kidney/metabolism , Male , Mice , Reperfusion Injury/metabolism , Reperfusion Injury/prevention & control
3.
Int J Mol Sci ; 22(11)2021 May 22.
Article En | MEDLINE | ID: mdl-34067475

Acute kidney injury (AKI) is a frequent and critical complication in the clinical setting. In rodents, AKI can be effectively prevented through caloric restriction (CR), which has also been shown to increase lifespan in many species. In Caenorhabditis elegans (C. elegans), longevity studies revealed that a marked CR-induced reduction of endocannabinoids may be a key mechanism. Thus, we hypothesized that regulation of endocannabinoids, particularly arachidonoyl ethanolamide (AEA), might also play a role in CR-mediated protection from renal ischemia-reperfusion injury (IRI) in mammals including humans. In male C57Bl6J mice, CR significantly reduced renal IRI and led to a significant decrease of AEA. Supplementation of AEA to near-normal serum concentrations by repetitive intraperitoneal administration in CR mice, however, did not abrogate the protective effect of CR. We also analyzed serum samples taken before and after CR from patients of three different pilot trials of dietary interventions. In contrast to mice and C. elegans, we detected an increase of AEA. We conclude that endocannabinoid levels in mice are modulated by CR, but CR-mediated renal protection does not depend on this effect. Moreover, our results indicate that modulation of endocannabinoids by CR in humans may differ fundamentally from the effects in animal models.


Acute Kidney Injury/metabolism , Acute Kidney Injury/prevention & control , Endocannabinoids/metabolism , Adult , Aged , Animals , Arachidonic Acids/metabolism , Caenorhabditis elegans/metabolism , Caloric Restriction/methods , Disease Models, Animal , Female , Humans , Kidney/metabolism , Longevity/physiology , Male , Mice , Mice, Inbred C57BL , Middle Aged , Polyunsaturated Alkamides/metabolism , Reperfusion Injury/metabolism
4.
J Am Soc Nephrol ; 31(4): 716-730, 2020 04.
Article En | MEDLINE | ID: mdl-32111728

BACKGROUND: Although AKI lacks effective therapeutic approaches, preventive strategies using preconditioning protocols, including caloric restriction and hypoxic preconditioning, have been shown to prevent injury in animal models. A better understanding of the molecular mechanisms that underlie the enhanced resistance to AKI conferred by such approaches is needed to facilitate clinical use. We hypothesized that these preconditioning strategies use similar pathways to augment cellular stress resistance. METHODS: To identify genes and pathways shared by caloric restriction and hypoxic preconditioning, we used RNA-sequencing transcriptome profiling to compare the transcriptional response with both modes of preconditioning in mice before and after renal ischemia-reperfusion injury. RESULTS: The gene expression signatures induced by both preconditioning strategies involve distinct common genes and pathways that overlap significantly with the transcriptional changes observed after ischemia-reperfusion injury. These changes primarily affect oxidation-reduction processes and have a major effect on mitochondrial processes. We found that 16 of the genes differentially regulated by both modes of preconditioning were strongly correlated with clinical outcome; most of these genes had not previously been directly linked to AKI. CONCLUSIONS: This comparative analysis of the gene expression signatures in preconditioning strategies shows overlapping patterns in caloric restriction and hypoxic preconditioning, pointing toward common molecular mechanisms. Our analysis identified a limited set of target genes not previously known to be associated with AKI; further study of their potential to provide the basis for novel preventive strategies is warranted. To allow for optimal interactive usability of the data by the kidney research community, we provide an online interface for user-defined interrogation of the gene expression datasets (http://shiny.cecad.uni-koeln.de:3838/IRaP/).


Acute Kidney Injury/genetics , Acute Kidney Injury/prevention & control , Caloric Restriction , Hypoxia , Ischemic Preconditioning/methods , RNA, Messenger/metabolism , Reperfusion Injury/genetics , Reperfusion Injury/prevention & control , Animals , Gene Expression Profiling , Male , Mice , Mice, Inbred C57BL , RNA, Messenger/genetics
5.
Sci Rep ; 9(1): 12526, 2019 08 29.
Article En | MEDLINE | ID: mdl-31467370

This observational study investigated the impact of hyponatremia resolution on the results of a comprehensive geriatric assessment (CGA) in 150 patients with age ≥70 years and serum sodium <130 mEq/L. The test battery including Barthel index of Activities of Daily Living (ADL) and various tests of neurocognitive function, motor performance and mood stability was applied on admission and at discharge. Changes of individual test results (Δ) were analyzed and normonatremic patients matched for age, gender, and ADL served as reference group. Most CGA test results improved. The improvement was more pronounced in the hyponatremia group with respect to ADL (ΔADL: 14.3 ± 17.1 vs. 9.8 ± 14.7; p = 0.002) and MMSE (ΔMMSE: 1.8 ± 3.0 vs. 0.7 ± 1.9; p = 0.002). Effect sizes were small (i.e., >0.2) in the overall analysis for ΔADL and ΔMMSE and moderate (i.e., >0.5) for ΔMMSE in the euvolemic subgroup. Beneficial effects on ΔADL and ΔMMSE were only observed in the subgroup of patients in which [Na+] was raised by >5 mEq/L and multivariable linear regression analysis confirmed [Na+] increase to be an independent predictor of MMSE improvement. Resolution of hyponatremia has a beneficial impact on the geriatric patients' overall functional status, in particular in euvolemic cases.


Aging/psychology , Hyponatremia/psychology , Activities of Daily Living , Aged , Aged, 80 and over , Aging/blood , Cognition , Female , Geriatrics , Humans , Hyponatremia/blood , Hyponatremia/physiopathology , Male , Mental Status and Dementia Tests , Middle Aged , Motor Activity , Sodium/blood
6.
PLoS One ; 11(8): e0161315, 2016.
Article En | MEDLINE | ID: mdl-27557097

Acute kidney injury is a leading contributor to morbidity and mortality in the ageing population. Proteotoxic stress response pathways have been suggested to contribute to the development of acute renal injury. Recent evidence suggests that increased synthesis of N-glycan precursors in the hexosamine pathway as well as feeding of animals with aminosugars produced in the hexosamine pathway may increase stress resistance through reducing proteotoxic stress and alleviate pathology in model organisms. As feeding of the hexosamine pathway metabolite glucosamine to aged mice increased their life expectancy we tested whether supplementation of this aminosugar may also protect mice from acute kidney injury after renal ischemia and reperfusion. Animals were fed for 4 weeks ad libitum with standard chow or standard chow supplemented with 0.5% N-acetylglucosamine. Preconditioning with caloric restriction for four weeks prior to surgery served as a positive control for protective dietary effects. Whereas caloric restriction demonstrated the known protective effect both on renal function as well as survival in the treated animals, glucosamine supplementation failed to promote any protection from ischemia-reperfusion injury. These data show that although hexosamine pathway metabolites have a proven role in enhancing protein quality control and survival in model organisms oral glucosamine supplementation at moderate doses that would be amenable to humans does not promote protection from ischemia-reperfusion injury of the kidney.


Acute Kidney Injury/pathology , Glucosamine/administration & dosage , Reperfusion Injury/pathology , Acute Kidney Injury/drug therapy , Acute Kidney Injury/metabolism , Administration, Oral , Animals , Apoptosis/drug effects , Biomarkers , Body Weight , Dietary Supplements , Disease Models, Animal , Drug Monitoring , Glucosamine/pharmacokinetics , Kidney Function Tests , Male , Mice , Protective Agents/administration & dosage , Protective Agents/pharmacokinetics , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism
7.
J Biol Chem ; 291(22): 11596-607, 2016 May 27.
Article En | MEDLINE | ID: mdl-27048650

Transcriptional co-activator with PDZ-binding motif (TAZ) and Yes-associated protein (YAP) are critical transcriptional co-activators downstream of the Hippo pathway involved in the regulation of organ size, tissue regeneration, proliferation, and apoptosis. Recent studies suggested common and distinct functions of TAZ and YAP and their diverse impact under several pathological conditions. Here we report differential regulation of TAZ and YAP in response to oxidative stress. H2O2 exposure leads to increased stability and activation of TAZ but not of YAP. H2O2 induces reversible S-glutathionylation at conserved cysteine residues within TAZ. We further demonstrate that TAZ S-glutathionylation is critical for reactive oxygen species (ROS)-mediated, TAZ-dependent TEA domain transcription factor (TEAD) trans-activation. Lysophosphatidic acid, a physiological activator of YAP and TAZ, induces ROS elevation and, subsequently, TAZ S-glutathionylation, which promotes TAZ-mediated target gene expression. TAZ expression is essential for renal homeostasis in mice, and we identify basal TAZ S-glutathionylation in murine kidney lysates, which is elevated during ischemia/reperfusion injury in vivo This induced nuclear localization of TAZ and increased expression of connective tissue growth factor. These results describe a novel mechanism by which ROS sustains total cellular levels of TAZ. This preferential regulation suggests TAZ to be a redox sensor of the Hippo pathway.


Cysteine/metabolism , Glutathione/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Nuclear Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Reperfusion Injury/metabolism , Trans-Activators/metabolism , Transcription Factors/metabolism , Amino Acid Sequence , Animals , Blotting, Western , Cell Cycle Proteins , Cells, Cultured , Connective Tissue Growth Factor/genetics , Connective Tissue Growth Factor/metabolism , Cysteine/chemistry , Glutathione/chemistry , Hippo Signaling Pathway , Hydrogen Peroxide/pharmacology , Immunoenzyme Techniques , Immunoprecipitation , Intracellular Signaling Peptides and Proteins/genetics , Male , Mice , Mice, Inbred C57BL , Molecular Sequence Data , Nuclear Proteins/genetics , Oxidants/pharmacology , Phosphoproteins/genetics , Phosphoproteins/metabolism , Protein Processing, Post-Translational , Protein Serine-Threonine Kinases/genetics , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reperfusion Injury/drug therapy , Reperfusion Injury/pathology , Reverse Transcriptase Polymerase Chain Reaction , Sequence Homology, Amino Acid , Signal Transduction/drug effects , Trans-Activators/genetics , Transcription Factors/genetics , Transcriptional Coactivator with PDZ-Binding Motif Proteins
...