Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Pediatr Urol ; 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38908983

RESUMEN

INTRODUCTION: Children with spina bifida (SB) undergo a videourodynamic study (VUDS) or urodynamic study and voiding cystourethrogram (VCUG). A standardized protocol for imaging during a pediatric VUDS has not been established. Our aim is to quantify radiation exposure and establish a baseline for children with spina bifida (SB) undergoing VUDS in current practice at our institution. METHODS: This is a retrospective study from 2013 to 2020 of consecutive pediatric SB patients undergoing VUDS by a single provider. Patients were categorized into three groups based on age; group 1 (0-2 YR), group 2 (2-10 YR), group 3 (>10 YR). Radiation data was reported as mean air kerma (AK), dose area product (DAP) and exposure time (seconds). Effective dose (ED) was calculated based on radiation quantity (Air Kerma, AK) and organ sensitivity. The lifetime attributable risk (LAR) was calculated based on AK and a risk coefficient. Data points calculated for patients undergoing VUDS were then compared to age matched institutional VCUG data in the same age groups. RESULTS: 398 patients undergoing VUDS met inclusion criteria and 262 independent patients underwent VCUG. ED increased with age in both VUDS and VCUG. All VCUG groups were found to have a higher ED than VUDS. The LAR for VUDS groups 1-3 was 0.001, 0.002, and 0.006, respectively. Reported in percentages, there is a 0.1%, 0.2%, and 0.6% chance, respectively, of age groups 1, 2 and 3 developing cancer as a result of the radiation exposure from a VUDS. DISCUSSION: Our study found that ED was low across all age groups for VUDS, comparing favorably to the VCUG groups. VCUG was selected as a benchmark comparison for its diagnostic similarities and, at times, overlapping indications. Few studies have described ED with respect to VUDS or extrapolate the ED of VUDS into LAR in the pediatric population. We recognize that we have not determined the true ED of the gonads and bladder, rather we have overestimated, as the data is based on an international reference point proximal to the exposed individual. However, LAR was calculated for each age group and revealed that patients are at a negligible increased risk of developing malignancy secondary to exposure compared to the general population. CONCLUSION: Our current practice for pediatric VUDS has exhibited consistently low radiation exposure amongst all age groups. Moving forward, we have the foundation and flexibility to create an imaging protocol for pediatric VUDS, while taking more calculated steps toward incorporating ALARA, as low as reasonably achievable, principles. A protocol adhering to the ALARA principle could provide consistency across institutions and aid in multi-institutional studies.

3.
Microbiol Spectr ; : e0020823, 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37606438

RESUMEN

Due to climate change, drought frequencies and severities are predicted to increase across the United States. Plant responses and adaptation to stresses depend on plant genetic and environmental factors. Understanding the effect of those factors on plant performance is required to predict species' responses to environmental change. We used reciprocal gardens planted with distinct regional ecotypes of the perennial grass Andropogon gerardii adapted to dry, mesic, and wet environments to characterize their rhizosphere communities using 16S rRNA metabarcode sequencing. Even though the local microbial pool was the main driver of these rhizosphere communities, the significant plant ecotypic effect highlighted active microbial recruitment in the rhizosphere, driven by ecotype or plant genetic background. Our data also suggest that ecotypes planted at their homesites were more successful in recruiting rhizosphere community members that were unique to the location. The link between the plants' homesite and the specific local microbes supported the "home field advantage" hypothesis. The unique homesite microbes may represent microbial specialists that are linked to plant stress responses. Furthermore, our data support ecotypic variation in the recruitment of congeneric but distinct bacterial variants, highlighting the nuanced plant ecotype effects on rhizosphere microbiome recruitment. These results improve our understanding of the complex plant host-soil microbe interactions and should facilitate further studies focused on exploring the functional potential of recruited microbes. Our study has the potential to aid in predicting grassland ecosystem responses to climate change and impact restoration management practices to promote grassland sustainability. IMPORTANCE In this study, we used reciprocal gardens located across a steep precipitation gradient to characterize rhizosphere communities of distinct dry, mesic, and wet regional ecotypes of the perennial grass Andropogon gerardii. We used 16S rRNA amplicon sequencing and focused oligotyping analysis and showed that even though location was the main driver of the microbial communities, ecotypes could potentially recruit distinct bacterial populations. We showed that different A. gerardii ecotypes were more successful in overall community recruitment and recruitment of microbes unique to the "home" environment, when growing at their "home site." We found evidence for "home-field advantage" interactions between the host and host-root-associated bacterial communities, and the capability of ecotypes to recruit specialized microbes that were potentially linked to plant stress responses. Our study aids in a better understanding of the factors that affect plant adaptation, improve management strategies, and predict grassland function under the changing climate.

4.
BMC Genomics ; 23(1): 784, 2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36451103

RESUMEN

BACKGROUND: Climate change will result in more frequent droughts that can impact soil-inhabiting microbiomes (rhizobiomes) in the agriculturally vital North American perennial grasslands. Rhizobiomes have contributed to enhancing drought resilience and stress resistance properties in plant hosts. In the predicted events of more future droughts, how the changing rhizobiome under environmental stress can impact the plant host resilience needs to be deciphered. There is also an urgent need to identify and recover candidate microorganisms along with their functions, involved in enhancing plant resilience, enabling the successful development of synthetic communities. RESULTS: In this study, we used the combination of cultivation and high-resolution genomic sequencing of bacterial communities recovered from the rhizosphere of a tallgrass prairie foundation grass, Andropogon gerardii. We cultivated the plant host-associated microbes under artificial drought-induced conditions and identified the microbe(s) that might play a significant role in the rhizobiome of Andropogon gerardii under drought conditions. Phylogenetic analysis of the non-redundant metagenome-assembled genomes (MAGs) identified a bacterial genome of interest - MAG-Pseudomonas. Further metabolic pathway and pangenome analyses recovered genes and pathways related to stress responses including ACC deaminase; nitrogen transformation including assimilatory nitrate reductase in MAG-Pseudomonas, which might be associated with enhanced drought tolerance and growth for Andropogon gerardii. CONCLUSIONS: Our data indicated that the metagenome-assembled MAG-Pseudomonas has the functional potential to contribute to the plant host's growth during stressful conditions. Our study also suggested the nitrogen transformation potential of MAG-Pseudomonas that could impact Andropogon gerardii growth in a positive way. The cultivation of MAG-Pseudomonas sets the foundation to construct a successful synthetic community for Andropogon gerardii. To conclude, stress resilience mediated through genes ACC deaminase, nitrogen transformation potential through assimilatory nitrate reductase in MAG-Pseudomonas could place this microorganism as an important candidate of the rhizobiome aiding the plant host resilience under environmental stress. This study, therefore, provided insights into the MAG-Pseudomonas and its potential to optimize plant productivity under ever-changing climatic patterns, especially in frequent drought conditions.


Asunto(s)
Andropogon , Poa , Rizosfera , Sequías , Pseudomonas , Filogenia , Nitrógeno , Nitrato Reductasas
5.
Tomography ; 8(5): 2618-2638, 2022 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-36287818

RESUMEN

Computed tomography angiography (CTA) has been the gold standard imaging modality for vascular imaging due to a variety of factors, including the widespread availability of computed tomography (CT) scanners, the ease and speed of image acquisition, and the high sensitivity of CTA for vascular pathology. However, the radiation dose experienced by the patient during imaging has long been a concern of this image acquisition method. Advancements in CT image acquisition techniques in combination with advancements in non-ionizing radiation imaging techniques including magnetic resonance angiography (MRA) and contrast-enhanced ultrasound (CEUS) present growing opportunities to reduce total radiation dose to patients. This review provides an overview of advancements in imaging technology and acquisition techniques that are helping to minimize radiation dose associated with vascular imaging.


Asunto(s)
Reducción Gradual de Medicamentos , Angiografía por Resonancia Magnética , Humanos , Angiografía por Resonancia Magnética/métodos , Tomografía Computarizada por Rayos X , Angiografía por Tomografía Computarizada , Cistografía
6.
Microbiol Spectr ; 10(3): e0239121, 2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-35442065

RESUMEN

Environmental change, especially frequent droughts, is predicted to detrimentally impact the North American perennial grasslands. Consistent dry spells will affect plant communities as well as their associated rhizobiomes, possibly altering the plant host performance under environmental stress. Therefore, there is a need to understand the impact of drought on the rhizobiome, and how the rhizobiome may modulate host performance and ameliorate its response to drought stress. In this study, we analyzed bacterial and fungal communities in the rhizospheres of three ecotypes (dry, mesic, and wet) of dominant prairie grass, Andropogon gerardii. The ecotypes were established in 2010 in a common garden design and grown for a decade under persistent dry conditions at the arid margin of the species' range in Colby, Kansas. The experiment aimed to answer whether and to what extent do the different ecotypes maintain or recruit distinct rhizobiomes after 10 years in an arid climate. In order to answer this question, we screened the bacterial and fungal rhizobiome profiles of the ecotypes under the arid conditions of western Kansas as a surrogate for future climate environmental stress using 16S rRNA and ITS2 metabarcoding sequencing. Under these conditions, bacterial communities differed compositionally among the A. gerardii ecotypes, whereas the fungal communities did not. The ecotypes were instrumental in driving the differences among bacterial rhizobiomes, as the ecotypes maintained distinct bacterial rhizobiomes even after 10 years at the edge of the host species range. This study will aid us to optimize plant productivity through the use of different ecotypes under future abiotic environmental stress, especially drought. IMPORTANCE In this study, we used a 10-year long reciprocal garden system, and reports that different ecotypes (dry, mesic, and wet) of dominant prairie grass, Andropogon gerardii can maintain or recruit distinct bacterial but not fungal rhizobiomes after 10 years in an arid environment. We used both 16S rRNA and ITS2 amplicons to analyze the bacterial and fungal communities in the rhizospheres of the respective ecotypes. We showed that A. gerardii might regulate the bacterial community to adapt to the arid environment, in which some ecotypes were not adapted to. Our study also suggested a possible tradeoff between the generalist and the specialist bacterial communities in specific environments, which could benefit the plant host. Our study will provide insights into the plant host regulation of the rhizosphere bacterial and fungal communities, especially during frequent drought conditions anticipated in the future.


Asunto(s)
Andropogon , Micobioma , Andropogon/genética , Bacterias/genética , Ecotipo , Poaceae/genética , ARN Ribosómico 16S/genética , Rizosfera , Microbiología del Suelo
7.
Evol Appl ; 13(9): 2333-2356, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33005227

RESUMEN

Plant response to climate depends on a species' adaptive potential. To address this, we used reciprocal gardens to detect genetic and environmental plasticity effects on phenotypic variation and combined with genetic analyses. Four reciprocal garden sites were planted with three regional ecotypes of Andropogon gerardii, a dominant Great Plains prairie grass, using dry, mesic, and wet ecotypes originating from western KS to Illinois that span 500-1,200 mm rainfall/year. We aimed to answer: (a) What is the relative role of genetic constraints and phenotypic plasticity in controlling phenotypes? (b) When planted in the homesite, is there a trait syndrome for each ecotype? (c) How are genotypes and phenotypes structured by climate? and (d) What are implications of these results for response to climate change and use of ecotypes for restoration? Surprisingly, we did not detect consistent local adaptation. Rather, we detected co-gradient variation primarily for most vegetative responses. All ecotypes were stunted in western KS. Eastward, the wet ecotype was increasingly robust relative to other ecotypes. In contrast, fitness showed evidence for local adaptation in wet and dry ecotypes with wet and mesic ecotypes producing little seed in western KS. Earlier flowering time in the dry ecotype suggests adaptation to end of season drought. Considering ecotype traits in homesite, the dry ecotype was characterized by reduced canopy area and diameter, short plants, and low vegetative biomass and putatively adapted to water limitation. The wet ecotype was robust, tall with high biomass, and wide leaves putatively adapted for the highly competitive, light-limited Eastern Great Plains. Ecotype differentiation was supported by random forest classification and PCA. We detected genetic differentiation and outlier genes associated with primarily precipitation. We identified candidate gene GA1 for which allele frequency associated with plant height. Sourcing of climate adapted ecotypes should be considered for restoration.

8.
Glob Chang Biol ; 25(3): 850-868, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30468548

RESUMEN

Many prior studies have uncovered evidence for local adaptation using reciprocal transplant experiments. However, these studies are rarely conducted for a long enough time to observe succession and competitive dynamics in a community context, limiting inferences for long-lived species. Furthermore, the genetic basis of local adaptation and genetic associations with climate has rarely been identified. Here, we report on a long-term (6-year) experiment conducted under natural conditions focused on Andropogon gerardii, the dominant grass of the North American Great Plains tallgrass ecosystem. We focus on this foundation grass that comprises 80% of tallgrass prairie biomass and is widely used in 20,000 km2 of restoration. Specifically, we asked the following questions: (a) Whether ecotypes are locally adapted to regional climate in realistic ecological communities. (b) Does adaptive genetic variation underpin divergent phenotypes across the climate gradient? (c) Is there evidence of local adaptation if the plants are exposed to competition among ecotypes in mixed ecotype plots? Finally, (d) are local adaptation and genetic divergence related to climate? Reciprocal gardens were planted with 3 regional ecotypes (originating from dry, mesic, wet climate sources) of Andropogon gerardii across a precipitation gradient (500-1,200 mm/year) in the US Great Plains. We demonstrate local adaptation and differentiation of ecotypes in wet and dry environments. Surprisingly, the apparent generalist mesic ecotype performed comparably under all rainfall conditions. Ecotype performance was underpinned by differences in neutral diversity and candidate genes corroborating strong differences among ecotypes. Ecotype differentiation was related to climate, primarily rainfall. Without long-term studies, wrong conclusions would have been reached based on the first two years. Further, restoring prairies with climate-matched ecotypes is critical to future ecology, conservation, and sustainability under climate change.


Asunto(s)
Adaptación Fisiológica/genética , Andropogon/fisiología , Cambio Climático , Ecotipo , Variación Genética , Pradera , Medio Oeste de Estados Unidos , Selección Genética , Factores de Tiempo
10.
Glob Chang Biol ; 23(10): 4365-4375, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28211151

RESUMEN

Phenotypic distribution within species can vary widely across environmental gradients but forecasts of species' responses to environmental change often assume species respond homogenously across their ranges. We compared predictions from species and phenotype distribution models under future climate scenarios for Andropogon gerardii, a widely distributed, dominant grass found throughout the central United States. Phenotype data on aboveground biomass, height, leaf width, and chlorophyll content were obtained from 33 populations spanning a ~1000 km gradient that encompassed the majority of the species' environmental range. Species and phenotype distribution models were trained using current climate conditions and projected to future climate scenarios. We used permutation procedures to infer the most important variable for each model. The species-level response to climate was most sensitive to maximum temperature of the hottest month, but phenotypic variables were most sensitive to mean annual precipitation. The phenotype distribution models predict that A. gerardii could be largely functionally eliminated from where this species currently dominates, with biomass and height declining by up to ~60% and leaf width by ~20%. By the 2070s, the core area of highest suitability for A. gerardii is projected to shift up to ~700 km northeastward. Further, short-statured phenotypes found in the present-day short grass prairies on the western periphery of the species' range will become favored in the current core ~800 km eastward of their current location. Combined, species and phenotype models predict this currently dominant prairie grass will decline in prevalence and stature. Thus, sourcing plant material for grassland restoration and forage should consider changes in the phenotype that will be favored under future climate conditions. Phenotype distribution models account for the role of intraspecific variation in determining responses to anticipated climate change and thereby complement predictions from species distributions models in guiding climate adaptation strategies.


Asunto(s)
Andropogon , Cambio Climático , Pradera , Poaceae , Prevalencia
11.
Emerg Med Int ; 2016: 7158268, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27127654

RESUMEN

Objectives. Violence in the Emergency Department (ED) has been a long-standing issue complicated by deficiencies in staff training, ease of weapons access, and response availability of public safety officers. The Vocera Badge is being used by our staff to request public safety assistance in lieu of a formal phone call to the University Police Communications Center. We sought to learn if use of this technology improved officer response times to the ED. Methods. Mean response times were reviewed and descriptive statistics analyzed to determine if the use of the Vocera Badge improved public safety officer response times to the ED. Results. Average response times improved from an average of 3.2 minutes (SD = 0.456) in the 6 months before the use of the communication badges to an average of 1.02 minutes (SD = 0.319) in the 6 months after use began. Conclusions. The use of the Vocera Badge seemed to decrease response times of public safety officers to our ED compared with the traditional method of calling a dispatch center to request assistance.

12.
BMC Genomics ; 17: 140, 2016 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-26919855

RESUMEN

BACKGROUND: Differential expression (DE) analysis of RNA-seq data still poses inferential challenges, such as handling of transcripts characterized by low expression levels. In this study, we use a plasmode-based approach to assess the relative performance of alternative inferential strategies on RNA-seq transcripts, with special emphasis on transcripts characterized by a small number of read counts, so-called low-count transcripts, as motivated by an ecological application in prairie grasses. Big bluestem (Andropogon gerardii) is a wide-ranging dominant prairie grass of ecological and agricultural importance to the US Midwest while edaphic subspecies sand bluestem (A. gerardii ssp. Hallii) grows exclusively on sand dunes. Relative to big bluestem, sand bluestem exhibits qualitative phenotypic divergence consistent with enhanced drought tolerance, plausibly associated with transcripts of low expression levels. Our dataset consists of RNA-seq read counts for 25,582 transcripts (60% of which are classified as low-count) collected from leaf tissue of individual plants of big bluestem (n = 4) and sand bluestem (n = 4). Focused on low-count transcripts, we compare alternative ad-hoc data filtering techniques commonly used in RNA-seq pipelines and assess the inferential performance of recently developed statistical methods for DE analysis, namely DESeq2 and edgeR robust. These methods attempt to overcome the inherently noisy behavior of low-count transcripts by either shrinkage or differential weighting of observations, respectively. RESULTS: Both DE methods seemed to properly control family-wise type 1 error on low-count transcripts, whereas edgeR robust showed greater power and DESeq2 showed greater precision and accuracy. However, specification of the degree of freedom parameter under edgeR robust had a non-trivial impact on inference and should be handled carefully. When properly specified, both DE methods showed overall promising inferential performance on low-count transcripts, suggesting that ad-hoc data filtering steps at arbitrary expression thresholds may be unnecessary. A note of caution is in order regarding the approximate nature of DE tests under both methods. CONCLUSIONS: Practical recommendations for DE inference are provided when low-count RNA-seq transcripts are of interest, as is the case in the comparison of subspecies of bluestem grasses. Insights from this study may also be relevant to other applications focused on transcripts of low expression levels.


Asunto(s)
Andropogon/genética , Genómica/métodos , ARN de Planta/genética , Análisis de Secuencia de ARN/métodos , Transcriptoma , Adaptación Fisiológica/genética , Fenotipo
13.
Ecology ; 96(9): 2433-45, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26594700

RESUMEN

Knowledge of the relative strength of evolution and the environment on a phenotype is required to predict species responses to environmental change and decide where to source plant material for ecological restoration. This information is critically needed for dominant species that largely determine the productivity of the central U.S. grassland. We established a reciprocal common garden experiment across a longitudinal gradient to test whether ecotypic variation interacts with the environment to affect growth and nitrogen (N) storage in a dominant grass. We predicted plant growth would increase from west to east, corresponding with increasing precipitation, but differentially among ecotypes due to local adaptation in all ecotypes and a greater range of growth response in ecotypes originating from west to east. We quantified aboveground biomass, root biomass, belowground net primary production (BNPP), root C:N ratio, and N storage in roots of three ecotypes of Andropogon gerardii collected from and reciprocally planted in central Kansas, eastern Kansas, and s6uthern Illinois. Only the ecotype from the most mesic region (southern Illinois) exhibited more growth from west to east. There was evidence for local adaptation in the southern Illinois ecotype by means of the local vs. foreign contrast within a site and the home vs. away contrast when growth in southern Illinois was compared to the most distant 'site in central Kansas. Root biomass of the eastern Kansas ecotype was higher at home than at either away site. The ecotype from the driest region, central Kansas, exhibited the least response across the environmental gradient, resulting in a positive relationship between the range of biomass response and precipitation in ecotype region of origin. Across all sites, ecotypes varied in root C:N ratio (highest in the driest-origin ecotype) and N storage in roots (highest in the most mesic-origin ecotype). The low and limited range of biomass, higher C:N ratio of roots, and lower N storage in the central Kansas ecotype relative to the southern Illinois ecotype suggests that introducing ecotypes of A. gerardii from much drier regions into highly mesic prairie would reduce productivity and alter belowground ecosystem processes under a wide range of conditions.


Asunto(s)
Andropogon/clasificación , Andropogon/fisiología , Ecosistema , Pradera , Nitrógeno/metabolismo , Biomasa
14.
Evol Appl ; 8(7): 705-23, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26240607

RESUMEN

Identifying suitable genetic stock for restoration often employs a 'best guess' approach. Without adaptive variation studies, restoration may be misguided. We test the extent to which climate in central US grasslands exerts selection pressure on a foundation grass big bluestem (Andropogon gerardii), widely used in restorations, and resulting in local adaptation. We seeded three regional ecotypes of A. gerardii in reciprocal transplant garden communities across 1150 km precipitation gradient. We measured ecological responses over several timescales (instantaneous gas exchange, medium-term chlorophyll absorbance, and long-term responses of establishment and cover) in response to climate and biotic factors and tested if ecotypes could expand range. The ecotype from the driest region exhibited greatest cover under low rainfall, suggesting local adaptation under abiotic stress. Unexpectedly, no evidence for cover differences between ecotypes exists at mesic sites where establishment and cover of all ecotypes were low, perhaps due to strong biotic pressures. Expression of adaptive differences is strongly environment specific. Given observed adaptive variation, the most conservative restoration strategy would be to plant the local ecotype, especially in drier locations. With superior performance of the most xeric ecotype under dry conditions and predicted drought, this ecotype may migrate eastward, naturally or with assistance in restorations.

15.
Mol Ecol ; 23(24): 6011-28, 2014 12.
Artículo en Inglés | MEDLINE | ID: mdl-25370460

RESUMEN

Big bluestem (Andropogon gerardii) is an ecologically dominant grass with wide distribution across the environmental gradient of U.S. Midwest grasslands. This system offers an ideal natural laboratory to study population divergence and adaptation in spatially varying climates. Objectives were to: (i) characterize neutral genetic diversity and structure within and among three regional ecotypes derived from 11 prairies across the U.S. Midwest environmental gradient, (ii) distinguish between the relative roles of isolation by distance (IBD) vs. isolation by environment (IBE) on ecotype divergence, (iii) identify outlier loci under selection and (iv) assess the association between outlier loci and climate. Using two primer sets, we genotyped 378 plants at 384 polymorphic AFLP loci across regional ecotypes from central and eastern Kansas and Illinois. Neighbour-joining tree and PCoA revealed strong genetic differentiation between Kansas and Illinois ecotypes, which was better explained by IBE than IBD. We found high genetic variability within prairies (80%) and even fragmented Illinois prairies, surprisingly, contained high within-prairie genetic diversity (92%). Using Bayenv2, 14 top-ranked outlier loci among ecotypes were associated with temperature and precipitation variables. Six of seven BayeScanFST outliers were in common with Bayenv2 outliers. High genetic diversity may enable big bluestem populations to better withstand changing climates; however, population divergence supports the use of local ecotypes in grassland restoration. Knowledge of genetic variation in this ecological dominant and other grassland species will be critical to understanding grassland response and restoration challenges in the face of a changing climate.


Asunto(s)
Andropogon/genética , Ecotipo , Genética de Población , Pradera , Análisis del Polimorfismo de Longitud de Fragmentos Amplificados , Teorema de Bayes , ADN de Plantas/genética , Variación Genética , Medio Oeste de Estados Unidos , Modelos Genéticos , Selección Genética , Análisis de Secuencia de ADN
16.
Am J Bot ; 100(10): 1957-68, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24061213

RESUMEN

PREMISE OF THE STUDY: Phenotypes of two Andropogon gerardii subspecies, big bluestem and sand bluestem, vary throughout the prairie ecosystem of North America. This study sought to determine the role of genetics and environment in driving adaptive variation of leaf structure in big bluestem and sand bluestem. • METHODS: Four populations of big bluestem and one population of sand bluestem were planted in common gardens at four sites across a precipitation gradient from western Kansas to southern Illinois. Internal leaf structure and trichome density of A. gerardii were examined by light microscopy to separate genetic and environmentally controlled traits. Leaf thickness, midrib thickness, bulliform cells, interveinal distance, vein size, and trichome density were quantified. • KEY RESULTS: At all planting sites, sand bluestem and the xeric population of A. gerardii had thicker leaves and fewer bulliform cells compared with mesic populations. Environment and genetic source population were both influential for leaf anatomy. Leaves from plants grown in mesic sites (Carbondale, Illinois and Manhattan, Kansas) had thicker midribs, larger veins, fewer trichomes, and a greater proportion of bulliform cells compared to plants grown in drier sites (Colby and Hays, Kansas). • CONCLUSIONS: Water availability has driven adaptive variation in leaf structure in populations of A. gerardii, particularly between sand bluestem and big bluestem. Genetically based differences in leaves of A. gerardii indicate adaptive variation and evolutionary forces differentiating sand bluestem from big bluestem. Environmental responses of A. gerardii leaves suggest an ability to adjust to drought, even in populations adapted to mesic home environments.


Asunto(s)
Andropogon/anatomía & histología , Andropogon/genética , Ambiente , Variación Genética , Hojas de la Planta/anatomía & histología , Hojas de la Planta/genética , Lluvia , Geografía , Illinois , Kansas , Análisis de los Mínimos Cuadrados , Hojas de la Planta/citología , Haz Vascular de Plantas/anatomía & histología , Semillas/anatomía & histología , Semillas/crecimiento & desarrollo
17.
Bioresour Technol ; 116: 413-20, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22525265

RESUMEN

Three ecotypes (CKS, EKS, IL) and one cultivar (KAW) of big bluestem (Andropogon gerardii) that were planted in three locations (Hays, KS; Manhattan, KS; and Carbondale, IL) were converted to bio-oil via hydrothermal conversion. Significant differences were found in the yield and elemental composition of bio-oils produced from big bluestem of different ecotypes and/or planting locations. Generally, the IL ecotype and the Carbondale, IL and Manhattan, KS planting locations gave higher bio-oil yield, which can be attributed to the higher total cellulose and hemicellulose content and/or the higher carbon but lower oxygen contents in these feedstocks. Bio-oil from the IL ecotype also had the highest carbon and lowest oxygen contents, which were not affected by the planting location. Bio-oils from big bluestem had yield, elemental composition, and chemical compounds similar to bio-oils from switchgrass and corncobs, although mass percentages of some of the compounds were slightly different.


Asunto(s)
Andropogon/crecimiento & desarrollo , Biocombustibles/análisis , Biotecnología/métodos , Ecotipo , Aceites de Plantas/metabolismo , Temperatura , Agua/química , Análisis de Varianza , Andropogon/clasificación , Andropogon/efectos de los fármacos , Carbono/análisis , Celulosa/farmacología , Cromatografía de Gases y Espectrometría de Masas , Geografía , Oxígeno/análisis , Panicum/efectos de los fármacos , Panicum/metabolismo , Polisacáridos/farmacología , Zea mays/efectos de los fármacos , Zea mays/metabolismo
18.
Mycologia ; 102(4): 822-34, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20648750

RESUMEN

In arctic tundra soil N is highly limiting, N mineralization is slow and organic N greatly exceeds inorganic N. We studied the effects of fungistatics (azoxystrobin [Quadris] or propiconazole [Tilt]) on the fungi isolated from ericaceous plant roots in vitro. In addition to testing the phytotoxicity of the two fungistatics we also tested their effects on growth and nitrogen uptake of an ericaceous plant (Vaccinium uliginosum) in a closed Petri plate system without root-associated fungi. Finally, to evaluate the fungistatic effects in an in vivo experiment we applied fungistatics and nitrogen isotopes to intact tundra soil cores from Toolik Lake, Alaska, and examined the ammonium-N and glycine-N use by Vaccinium vitis-idaea with and without fungistatics. The experiments on fungal pure cultures showed that Tilt was more effective in reducing fungal colony growth in vitro than Quadris, which was highly variable among the fungal strains. Laboratory experiments aiming to test the fungistatic effects on plant performance in vitro showed that neither Quadris nor Tilt affected V. uliginosum growth or N uptake. In this experiment V. uliginosum assimilated more than an order of magnitude more ammonium-N than glycine-N. The intact tundra core experiment provided contrasting results. After 10 wk of fungistatic application in the growth chamber V. vitis-idaea leaf %N was 10% lower and the amount of leaf 15N acquired was reduced from labeled ammonium (33%) and glycine (40%) during the 4 d isotope treatment. In contrast to the in vitro experiment leaf 15N assimilation from glycine was three times higher than from 15NH4 in the treatments that received no-fungistatics. We conclude that the function of the fungal communities is essential to the acquisition of N from organic sources and speculate that N acquisition from inorganic sources is mainly inhibited by competition with complex soil microbial communities.


Asunto(s)
Fungicidas Industriales/farmacología , Metacrilatos/farmacología , Nitrógeno/metabolismo , Pirimidinas/farmacología , Microbiología del Suelo , Triazoles/farmacología , Vaccinium vitis-Idaea/metabolismo , Regiones Árticas , Raíces de Plantas/microbiología , Estrobilurinas
19.
Trends Ecol Evol ; 22(5): 273-9, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17296243

RESUMEN

Microarrays are used to measure simultaneously the amount of mRNAs transcribed from many genes. They were originally designed for gene expression profiling in relatively simple biological systems, such as cell lines and model systems under constant laboratory conditions. This poses a challenge to ecologists who increasingly want to use microarrays to unravel the genetic mechanisms underlying complex interactions among organisms and between organisms and their environment. Here, we discuss typical experimental and statistical problems that arise when analyzing genome-wide expression profiles in an ecological context. We show that experimental design and environmental confounders greatly influence the identification of candidate genes in ecological microarray studies, and that following several simple recommendations could facilitate the analysis of microarray data in ecological settings.


Asunto(s)
Ecología , Perfilación de la Expresión Génica , Análisis de Secuencia por Matrices de Oligonucleótidos , Animales , Flujo Genético , Genómica
20.
Mycologia ; 97(6): 1177-94, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-16722212

RESUMEN

We tested whether fungal communities are impacted by nitrogen deposition or increased precipitation by PCR-amplifying partial fungal rRNA genes from 24 soil and 24 root samples from a nitrogen enrichment and irrigation experiment in a tallgrass prairie at Konza Prairie Biological Station in northeastern Kansas, U.S.A. Obtained fungal sequences represented great fungal diversity that was distributed mainly in ascomycetes and basiodiomycetes; only a few zygomycetes and glomeromycetes were detected. Conservative extrapolated estimates of the fungal species richness suggest that the true richness may be at least twice as high as observed. The effects of nitrogen enrichment or irrigation on fungal community composition, diversity or clone richness could not be unambiguously assessed because of the overwhelming diversity. However, soil communities differed from root communities in diversity, richness and composition. The compositional differences were largely attributable to an abundant, soil-inhabiting group placed as a well-supported sister group to other ascomycetes. This group likely represents a novel group of fungi. We conclude that the great fungal richness in this ecosystem precluded a reliable assessment of anthropogenic impacts on soil or rhizosphere communities using the applied sampling scheme, and that detection of novel fungi in soil may be more a rule than an exception.


Asunto(s)
Hongos/aislamiento & purificación , Poaceae/microbiología , ARN Ribosómico 18S/análisis , Microbiología del Suelo , Ascomicetos/genética , Ascomicetos/aislamiento & purificación , Ascomicetos/metabolismo , Secuencia de Bases , Basidiomycota/genética , Basidiomycota/aislamiento & purificación , Basidiomycota/metabolismo , ADN de Hongos/química , ADN de Hongos/genética , Ecosistema , Hongos/genética , Hongos/metabolismo , Variación Genética , Nitrógeno/metabolismo , Filogenia , Raíces de Plantas/microbiología , Reacción en Cadena de la Polimerasa , Polimorfismo de Longitud del Fragmento de Restricción , ARN Ribosómico 18S/genética , Agua/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA