Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
2.
Environ Sci Technol ; 58(19): 8531-8541, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38690765

RESUMEN

Colloidal activated carbon (CAC) is an emerging technology for the in situ remediation of groundwater impacted by per- and polyfluoroalkyl substances (PFAS). In assessing the long-term effectiveness of a CAC barrier, it is crucial to evaluate the potential of emplaced CAC particles to be remobilized and migrate away from the sorptive barrier. We examine the effect of two polymer stabilizers, carboxymethyl cellulose (CMC) and polydiallyldimethylammonium chloride (PolyDM), on CAC deposition and remobilization in saturated sand columns. CMC-modified CAC showed high mobility in a wide ionic strength (IS) range from 0.1 to 100 mM, which is favorable for CAC delivery at a sufficient scale. Interestingly, the mobility of PolyDM-modified CAC was high at low IS (0.1 mM) but greatly reduced at high IS (100 mM). Notably, significant remobilization (release) of deposited CMC-CAC particles occurred upon the introduction of solution with low IS following deposition at high IS. In contrast, PolyDM-CAC did not undergo any remobilization following deposition due to its favorable interactions with the quartz sand. We further elucidated the CAC deposition and remobilization behaviors by analyzing colloid-collector interactions through the application of Derjaguin-Landau-Verwey-Overbeek theory, and the inclusion of a discrete representation of charge heterogeneity on the quartz sand surface. The classical colloid filtration theory was also employed to estimate the travel distance of CAC in saturated columns. Our results underscore the roles of polymer coatings and solution chemistry in CAC transport, providing valuable guidelines for the design of in situ CAC remediation with maximized delivery efficiency and barrier longevity.


Asunto(s)
Coloides , Restauración y Remediación Ambiental , Agua Subterránea , Agua Subterránea/química , Coloides/química , Restauración y Remediación Ambiental/métodos , Polímeros/química , Carbón Orgánico/química , Arena/química , Contaminantes Químicos del Agua/química , Carbono/química
3.
J Colloid Interface Sci ; 641: 666-674, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36963259

RESUMEN

HYPOTHESES: The transport behavior of colloids in subsurface porous media is altered by surface chemical and physical heterogeneities. Understanding the mechanisms involved and distribution outcomes is crucial to assess and control groundwater contamination. The multi-scale processes that broaden residence time distribution for particles in the medium are here succinctly described with an upscaling model. Experiments/model: The spatial distribution of silver particles along glass bead-packed columns obtained from X-ray micro-computed tomography and a mechanistic upscaling model were used to study colloid retention across interface-, collector-, pore-, and Darcy-scales. Simulated energy profiles considering variable colloid-grain interactions were used to determine collector efficiencies from particle trajectories via full force-torque balance. Rate coefficients were determined from collector efficiencies to parameterize the advective-dispersive-reactive model that reports breakthrough curves and depth profiles. FINDINGS: Our results indicate that: (i) with surface heterogeneity, individual colloid-grain interactions are non-unique and span from repulsive to attractive extremes; (ii) experimentally observed spatial positioning of retention at grain-water interfaces and grain-to-grain contacts is governed respectively by mechanistic attachment to the grain surface and retention without contact at rear-flow stagnation zones, and (iii) experimentally observed non-monotonic retention profiles and heavy-tailed breakthrough curves can be modeled with explicit implementation of heterogeneity at smaller scales.

4.
Environ Sci Technol ; 56(7): 4121-4131, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35312300

RESUMEN

This study conducted saturated column experiments to systematically investigate deposition of 1 µm positively charged polystyrene latex micro-colloids (representing microplastic particles) on negatively charged rough sand, glass beads, and soil with pore water velocities (PWV) from 4.9 × 10-5 to 8.8 × 10-4 m/s. A critical value of PWV was found below which colloidal attachment efficiency (AE) increased with increasing PWV. The increase in AE with PWV was attributed to enhanced delivery of the colloids and subsequent attachment at concave locations of rough collector surfaces. The AE decreased with further increasing PWV beyond the threshold because the convex sites became unavailable for colloid attachment. By simulating the rough surfaces using the Weierstrass-Mandelbrot equation, the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) interaction energy calculations and torque analysis revealed that the adhesive torques could be reduced to be comparable or smaller than hydrodynamic torques even under the favorable conditions. Interestingly, scanning electron microscopic experiments showed that blocking occurred at convex sites at all ionic strengths (ISs) (e.g., even when the colloid-colloid interaction was attractive), whereas at concave sites, blocking and ripening (i.e., attached colloids favor subsequent attachment) occurred at low and high ISs, respectively. To our knowledge, our work was the first to show coexistence of blocking and ripening at high ISs due to variation of the collector surface morphology.


Asunto(s)
Coloides , Plásticos , Concentración Osmolar , Porosidad , Agua
5.
Chemosphere ; 287(Pt 3): 132197, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34547559

RESUMEN

The effectiveness of submerged synthetic aquatic vegetation on removal of colloids from flowing water was investigated to explore retention of particulate nonpoint source pollutants in aquatic systems. In colloid transport experiments, the deposition rate coefficient of colloids in dense vegetation is often taken as spatially constant. This assumption was tested by experiments and modeling aimed at quantifying changes in colloid retention with travel distance in submerged synthetic aquatic vegetation. Experiments were performed in a 10-m long, 0.6-m wide flume with a 5-cm water depth under different fluid velocities, initial colloid concentrations, and solution pH values. A model accounting for advection, dispersion and first-order kinetic deposition described the experimental data. The colloid deposition rate coefficient showed a power-law decrease with travel distance, and reached a steady state value before the end of the flume. Measured changes in colloid properties with transport distance (ζ potential and size) could not explain the observed decrease. While gravity was shown to contribute to the decrease, its impact was too weak to explain the decreasing power law trend, suggesting that processes operating in granular media to produce similar outcomes may also apply to submerged vegetation.


Asunto(s)
Coloides , Gravitación , Cinética , Porosidad , Agua
6.
Sci Total Environ ; 749: 141273, 2020 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-32836114

RESUMEN

The specific source of high burdens of selenium (Se) and mercury (Hg) in several bird species at Great Salt Lake (GSL) remain unknown. Frequent co-located water and brine shrimp samples were collected during 2016 through 2017 to identify potential correlations of element concentrations among brines and brine shrimp, a keystone species in the GSL. Like many aquatic systems, GSL is characterized by elevated methylmercury (MeHg) in deep waters. However, in contrast to thermally-stratified aquatic systems, biota in the salinity-stratified GSL do not reside in its deep waters, obscuring the presumed relationship between elevated MeHg in biota and in the deep brine. Brine shrimp and water column (shallow and deep, filtered and unfiltered) samples were collected from six sites spanning the South Arm of GSL approximately every other month. Mercury concentrations in brine shrimp (on average 89% of which is MeHg) were correlated only with total mercury in surface filtered water, and displayed little spatial variability, but consistent seasonal trends across the two sampled years. In contrast to Hg, temporal correspondence was observed between Se concentrations in brine shrimp and those in all water samples regardless of filtering and depth, with maxima and minima at higher-than-seasonal frequency. The data suggest a spatially diffuse source of bioavailable mercury to the shallow brine that responds to seasonal influences, for which the underlying deep brine, surficial sediments, and overlying atmosphere were evaluated in terms of potential temporal correspondence to shallow brine and brine shrimp Hg concentrations, as well as potential to mix across the extent of the shallow brine. Bioaccumulation factors were at the low end of those reported for marine systems, and decreased at higher trace element concentrations in water.


Asunto(s)
Mercurio , Compuestos de Metilmercurio , Selenio , Contaminantes Químicos del Agua , Animales , Artemia , Monitoreo del Ambiente , Lagos , Mercurio/análisis , Selenio/análisis , Utah , Agua , Contaminantes Químicos del Agua/análisis
7.
Water Res ; 182: 116012, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32730996

RESUMEN

Nanoparticle and microplastic (colloid) transport behaviors impact strategies for groundwater protection and remediation. Complex colloid transport behaviors of anionic nano- and micro-sized colloids have been previously elucidated via independent experiments in chemically-cleaned and amended granular media with grain sizes in the range of fine to coarse sand (e.g., 200-1000 µm). Such experiments show that under conditions where a repulsive barrier was present in colloid-collector interactions (unfavorable conditions), the distribution of retained colloids down-gradient from their source deviates from the exponential decrease expected from compounded loss across a series of collectors (grains). Previous experiments have not examined the impact of colloid size or granular media grain size on colloid distribution down-gradient from their source, particularly in streambed-equilibrated granular media. To address this gap, a field transport experiment in constructed wetland stream beds to distances up to 20 m were conducted for colloids ranging in size from micro to nano (60 nm-7 µm) in streambed-equilibrated pea gravel and sand (4200 and 420 µm mean grain sizes, respectively). All colloid sizes showed non-exponential (hyper-exponential) distributions from source, over meter scales in pea gravel versus cm scales reported for fine sand. Colloids in the ca. 1 µm size range were most mobile, as expected from mass transfer to surfaces and interaction with nanoscale heterogeneity. The distance over which non-exponential colloid distribution occurred increased with media grain size, which carries implications for the potential mechanism driving non-exponential colloid distribution from source, and for strategies to predict transport.


Asunto(s)
Nanopartículas , Plásticos , Coloides , Microplásticos , Tamaño de la Partícula , Porosidad
8.
J Colloid Interface Sci ; 577: 471-480, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32505007

RESUMEN

HYPOTHESIS: Natural or engineered colloidal particles are often non-spherical in shape. In contrast to the widely-used "homogeneous sphere" assumption, the non-spherical particle shape is expected to alter particle-fluid-surface interactions, which in turn affect particle transport and retention. EXPERIMENTS AND SIMULATIONS: Polystyrene microspheres were stretched to rod-shaped particles of two aspect ratios (2:1, 6:1). The transport and retention behaviors of rods versus spheres were investigated in packed quartz sand columns and impinging jet systems. In parallel, a 3D trajectory model was employed to simulate particle translation and rotation, and to elucidate the role and underlying mechanisms of particle shape impact on transport. FINDINGS: Rods were observed to undergo rotating and tumbling motions in response to fluid shear from experiments and simulations. However, no distinct retention trends between rods and spheres were observed from column studies, despite BSA-coating on particles, Fe-coating on sand or velocity change. This was primarily due to the super-hydrophobic nature of colloid surfaces acquired from stretching process, which in hydrophilic sand columns, dominated particle-surface charge interactions. Simulations using colloids with randomly distributed charge patches qualitatively produced the observed insensitivity in retention respecting aspect ratio under low charge coverage (<30%). Hence, particle shape influences were strongly coupled with colloid surface properties and flow hydrodynamics.

9.
Environ Sci Technol ; 54(13): 8032-8042, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32459088

RESUMEN

Quantitative linkage of fundamental physicochemical characteristics to rate coefficients used in simulations of experimentally observed transport behaviors of nanoparticles and microplastics (colloids) in environmental granular media is an active area of research. Quantitative linkage is herein demonstrated for (i) colloids ranging from nano- to microscale; in two field-based granular media of contrasting grain size, (ii) natural fine sand at the column scale; and (ii) streambed-equilibrated commercial pea gravel at the field scale. Continuum-scale rate coefficients were linked to nanoscale interactions via mechanistic pore-scale colloid trajectory simulations that predicted and defined fast- and slow-attaching subpopulations, as well as nonattaching subpopulations that either remained in the near-surface pore water or re-entrained to bulk pore water. These subfractions of the classic collector efficiency were upscaled to continuum-scale rate coefficients that produced experimentally observed colloid breakthrough-elution concentration histories and nonexponential colloid distributions from the source. The simulations explained transition from hyperexponential to nonmonotonic colloid distributions from the source as driven accumulation of mobile near-surface colloids due to relatively strong secondary minimum interaction and weak diffusion for microscale colloids. The assumption of depletion of the fast-attaching colloid subpopulation by attachment to grain surfaces produced the experimentally observed contrasting distances across which nonexponential colloid distribution from the source occurred in the fine sand versus pea gravel. Rate coefficients were quantitatively calculated from physicochemical parameters and the following three fit parameters: (i) fractional coverage by nanoscale heterogeneity; (ii) efficiency of return to the near-surface domain; and (iii) in explicit simulations, characteristic velocity for scaling transfer to near-surface pore water.


Asunto(s)
Nanopartículas , Plásticos , Coloides , Microplásticos , Porosidad
10.
Environ Sci Technol ; 54(1): 137-145, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31770489

RESUMEN

Lesser pathogen prevalence is well recognized in granular versus fractured aquifers; however, the impact of residence time (inactivation/death) versus removal (pore-scale delivery to surfaces) on pathogen prevalence remains unaddressed. The objective of this study was to examine the specific role of pore-scale delivery to surfaces (removal) as an explanation of contrasting pathogen prevalence in granular versus fractured media from Wisconsin. Inactivation/death was obviated by the use of nonbiological colloids in column transport experiments conducted in representative media from the two Wisconsin sites. Trends in retention as a function of colloid size were examined using nano- to microsized (0.1-4.2 µm) carboxylate-modified polystyrene latex microspheres that represented virus- to protozoa-sized pathogens. Several orders of magnitude greater removal of all colloid sizes were observed in granular relative to those in fractured media, whereas the size corresponding to minimum retention contrasted between the two media. Particle trajectory simulations in collectors (flow fields with surfaces) representing granular versus fractured media captured the observed contrasting retention and trends with colloid size. These results demonstrate that flow impingement on surfaces at forward flow stagnation zones drives contrasting pore-scale delivery to surfaces in granular versus fractured media and potentially the observed contrasting pathogen prevalence in granular versus fractured aquifers.


Asunto(s)
Coloides , Agua Subterránea , Tamaño de la Partícula , Porosidad , Prevalencia , Wisconsin
11.
Langmuir ; 35(27): 9061-9070, 2019 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-31181161

RESUMEN

Colloid attachment and detachment behaviors concern a wide range of environmental contexts but have typically been mechanistically predicted exclusive of one another despite their obvious coupling. Furthermore, previous mechanistic prediction often addressed packed column contexts, wherein specific forces and torques on the colloid could not be well-constrained, preventing robust predictions. These weaknesses were addressed through direct observation experiments under conditions where perfect sink assumptions fail and allow calibration of the contact between the colloid and collector. Attachment and flow perturbation experiments in the presence of colloid-collector attraction (favorable conditions) permitted calibration of contact parameters without the complexity that comes with colloid-collector repulsion (unfavorable conditions). Combining calibrated contact parameters with discrete representative nanoscale heterogeneity, developed to predict unfavorable attachment, provided an independent means to predict unfavorable detachment. The result was mechanistic prediction of colloid attachment and detachment that quantitatively agreed with experimental observation for both ionic strength and flow perturbation results, improving significantly upon previous qualitative prediction.

12.
Environ Entomol ; 48(4): 968-976, 2019 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-31115445

RESUMEN

The native prairie of the southern Great Plains has been especially modified by two related forces: conversion of native prairie to agricultural forms of land use and removal of black-tailed prairie dogs (Rodentia: Sciuridae, Cynomys ludovicianus (Ord, 1815)) that act as ecosystem engineers via their burrowing and grazing activities. It is unknown how these changes have affected the native bee community. We surveyed the bee communities in relatively intact native prairie at two National Wildlife Refuges in Texas, quantifying bee community structure as a function of the presence/absence of grazing by prairie dogs. Over a 5-mo sampling period in spring-summer 2013, we found high overall bee diversity (180 species, mostly solitary ground-nesters), with differences detected in diversity between Muleshoe and Buffalo Lake National Wildlife Refuges as well as on and off prairie dog colonies. Although the same three species dominated the bee community at both refuges, most species were represented by relatively few individuals, leading to overall differences in diversity (richness, evenness, and effective number of species) by refuge. Bee diversity differed between sites on and off prairie dog colonies, but in trends that differed by refuge and by index, suggesting that location was more important than prairie dog presence. These results represent a reference fauna against which other regional bee communities in other land-cover types can be compared, but the high spatial heterogeneity we found indicates that detecting effects of landscape change on native bees will be challenging.


Asunto(s)
Ecosistema , Sciuridae , Agricultura , Animales , Abejas , Estaciones del Año , Texas
13.
Environ Sci Technol ; 53(5): 2450-2459, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30762346

RESUMEN

Recent experiments revealed that roughness decreases the gap in colloid attachment between favorable (repulsion absent) and unfavorable (repulsion present) conditions through a combination of hydrodynamic slip and surface interactions with asperities. Hydrodynamic slip was calibrated to experimentally observed tangential colloid velocities, demonstrating that slip length was equal to maximum asperity relief, thereby providing a functional relationship between slip and roughness metrics. Incorporation of the slip length in mechanistic particle trajectory simulations yielded the observed modest decrease in attachment over rough surfaces under favorable conditions, with the observed decreased attachment being due to reduced colloid delivery rather than decreased attraction. Cumulative interactions with multiple asperities acting within the zone of colloid-surface interaction were unable to produce the observed dramatic increased attachment and decreased reversibility with increased roughness under unfavorable conditions, necessitating inclusion of nanoscale attractive heterogeneity that was inferred to have codeveloped with roughness. Simulated attachment matched experimental observations when the spatial frequency of larger heterodomains (nanoscale zones of attraction) increased disproportionately relative to smaller heterodomains as roughness increased, whereas attachment was insensitive to asperity properties, including the number of interactions per asperity and asperity height; colloid detachment simulations were highly sensitive to these parameters. These cumulative findings reveal that hydrodynamic slip moderately decreases colloid bulk delivery, nanoscale heterogeneity dramatically enhances colloid attachment, and multiple interactions among asperities decrease detachment from rough surfaces.


Asunto(s)
Coloides , Hidrodinámica , Porosidad , Propiedades de Superficie
14.
Water Resour Res ; 54(1): 46-60, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31988542

RESUMEN

We used a recently developed simple mathematical network model to upscale pore-scale colloid transport information determined under unfavorable attachment conditions. Classical log-linear and non-monotonic retention profiles, both well-reported under favorable and unfavorable attachment conditions, respectively, emerged from our upscaling. The primary attribute of the network is colloid transfer between bulk pore fluid, the near surface fluid domain (NSFD), and attachment (treated as irreversible). The network model accounts for colloid transfer to the NSFD of down-gradient grains and for reentrainment to bulk pore fluid via diffusion or via expulsion at rear flow stagnation zones (RFSZs). The model describes colloid transport by a sequence of random trials in a 1D network of Happel cells, which contain a grain and a pore. Using combinatorial analysis that capitalizes on the binomial coefficient, we derived from the pore-scale information the theoretical residence time distribution of colloids in the network. The transition from log-linear to non-monotonic retention profiles occurs when the conditions underlying classical filtration theory are not fulfilled, i.e., when a NSFD colloid population is maintained. Then, nonmonotonic retention profiles result, potentially both for attached and NSFD colloids. The concentration maxima shift downgradient depending on specific parameter choice. The concentration maxima were also shown to shift downgradient temporally (with continued elution) under conditions where attachment is negligible, explaining experimentally-observed down-gradient transport of retained concentration maxima of adhesion-deficient bacteria. For the case of zero reentrainment, we develop closed form, analytical expressions for the shape and the maximum of the colloid retention profile.

15.
Environ Sci Technol ; 51(9): 4887-4896, 2017 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-28399629

RESUMEN

Measurements of chemical and physical parameters made before and after sealing of culverts in the railroad causeway spanning the Great Salt Lake in late 2013 documented dramatic alterations in the system in response to the elimination of flow between the Great Salt Lake's north and south arms. The flow of denser, more-saline water through the culverts from the north arm (Gunnison Bay) to the south arm (Gilbert Bay) previously drove the perennial stratification of the south arm and the existence of oxic shallow brine and anoxic deep brine layers. Closure of the causeway culverts occurred concurrently with a multiyear drought that resulted in a decrease in the lake elevation and a concomitant increase in top-down erosion of the upper surface of the deep brine layer by wind-forced mixing. The combination of these events resulted in the replacement of the formerly stratified water column in the south arm with one that was vertically homogeneous and oxic. Total mercury concentrations in the deep waters of the south arm decreased by approximately 81% and methylmercury concentrations in deep waters decreased by roughly 86% due to destratification. Methylmercury concentrations decreased by 77% in underlying surficial sediment, whereas there was no change observed in total mercury. The dramatic mercury loss from deep waters and methylmercury loss from underlying sediment in response to causeway sealing provides new understanding of the potential role of the deep brine layer in the accumulation and persistence of methylmercury in the Great Salt Lake. Additional mercury measurements in biota appear to contradict the previously implied connection between elevated methylmercury concentrations in the deep brine layer and elevated mercury in avian species reported prior to causeway sealing.


Asunto(s)
Lagos , Mercurio , Biota , Monitoreo del Ambiente , Sedimentos Geológicos , Compuestos de Metilmercurio , Utah , Agua , Contaminantes Químicos del Agua
16.
Environ Sci Technol ; 51(4): 2151-2160, 2017 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-28132502

RESUMEN

Surface roughness has been reported to both increase as well as decrease colloid retention. In order to better understand the boundaries within which roughness operates, attachment of a range of colloid sizes to glass with three levels of roughness was examined under both favorable (energy barrier absent) and unfavorable (energy barrier present) conditions in an impinging jet system. Smooth glass was found to provide the upper and lower bounds for attachment under favorable and unfavorable conditions, respectively. Surface roughness decreased, or even eliminated, the gap between favorable and unfavorable attachment and did so by two mechanisms: (1) under favorable conditions attachment decreased via increased hydrodynamic slip length and reduced attraction and (2) under unfavorable conditions attachment increased via reduced colloid-collector repulsion (reduced radius of curvature) and increased attraction (multiple points of contact, and possibly increased surface charge heterogeneity). Absence of a gap where these forces most strongly operate for smaller (<200 nm) and larger (>2 µm) colloids was observed and discussed. These observations elucidate the role of roughness in colloid attachment under both favorable and unfavorable conditions.


Asunto(s)
Coloides , Hidrodinámica , Vidrio , Porosidad
17.
Water Res ; 91: 295-304, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26803265

RESUMEN

Arsenic contamination in groundwater is a public health and environmental concern in the United States (U.S.) particularly where monitoring is not required under the Safe Water Drinking Act. Previous studies suggest the influence of regional mechanisms for arsenic mobilization into groundwater; however, no study has examined how influencing parameters change at a continental scale spanning multiple regions. We herein examine covariates for groundwater in the western, central and eastern U.S. regions representing mechanisms associated with arsenic concentrations exceeding the U.S. Environmental Protection Agency maximum contamination level (MCL) of 10 parts per billion (ppb). Statistically significant covariates were identified via classification and regression tree (CART) analysis, and included hydrometeorological and groundwater chemical parameters. The CART analyses were performed at two scales: national and regional; for which three physiographic regions located in the western (Payette Section and the Snake River Plain), central (Osage Plains of the Central Lowlands), and eastern (Embayed Section of the Coastal Plains) U.S. were examined. Validity of each of the three regional CART models was indicated by values >85% for the area under the receiver-operating characteristic curve. Aridity (precipitation minus potential evapotranspiration) was identified as the primary covariate associated with elevated arsenic at the national scale. At the regional scale, aridity and pH were the major covariates in the arid to semi-arid (western) region; whereas dissolved iron (taken to represent chemically reducing conditions) and pH were major covariates in the temperate (eastern) region, although additional important covariates emerged, including elevated phosphate. Analysis in the central U.S. region indicated that elevated arsenic concentrations were driven by a mixture of those observed in the western and eastern regions.


Asunto(s)
Arsénico/análisis , Monitoreo del Ambiente/métodos , Agua Subterránea/análisis , Contaminantes Químicos del Agua/análisis , Pozos de Agua , Geografía , Análisis de Regresión , Estados Unidos
18.
Langmuir ; 31(34): 9366-78, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26263019

RESUMEN

Despite several decades of research there currently exists no mechanistic theory to predict colloid attachment in porous media under environmental conditions where colloid-collector repulsion exists (unfavorable conditions for attachment). It has long been inferred that nano- to microscale surface heterogeneity (herein called discrete heterogeneity) drives colloid attachment under unfavorable conditions. Incorporating discrete heterogeneity into colloid-collector interaction calculations in particle trajectory simulations predicts colloid attachment under unfavorable conditions. As yet, discrete heterogeneity cannot be independently measured by spectroscopic or other approaches in ways directly relevant to colloid-surface interaction. This, combined with the fact that a given discrete heterogeneity representation will interact differently with differently sized colloids as well as different ionic strengths for a given sized colloid, suggests a strategy to back out representative discrete heterogeneity by a comparison of simulations to experiments performed across a range of colloid size, solution IS, and fluid velocity. This has recently been performed for interaction of carboxylate-modified polystyrene latex (CML) microsphere attachment to soda lime glass at pH 6.7 with NaCl electrolyte. However, extension to other surfaces, pH values, and electrolytes is needed. For this reason, the attachment of CML (0.25, 1.1, and 2.0 µm diameters) from aqueous suspension onto a variety of unfavorable mineral surfaces (soda lime glass, muscovite, and albite) was examined for pH values of 6.7 and 8.0), fluid velocities (1.71 × 10(-3) and 5.94 × 10(-3) m s(-1)), IS (6.0 and 20 mM), and electrolytes (NaCl, CaSO4, and multivalent mixtures). The resulting representative heterogeneities (heterodomain size and surface coverage, where heterodomain refers to nano- to microscale attractive domains) yielded colloid attachment predictions that were compared to predictions from existing applicable semiempirical expressions in order to examine the strengths and weaknesses of the discrete heterogeneity approach and opportunities for improvement.

19.
Sci Total Environ ; 532: 20-30, 2015 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-26057623

RESUMEN

Similar to fracking, the development of tar sand mining in the U.S. has moved faster than understanding of potential water quality impacts. Potential water quality impacts of tar sand mining, processing, and disposal to springs in canyons incised approximately 200 m into the Tavaputs Plateau, at the Uinta Basin southern rim, Utah, USA, were evaluated by hydrogeochemical sampling to determine potential sources of recharge, and chemical thermodynamic estimations to determine potential changes in transfer of bitumen compounds to water. Because the ridgetops in an area of the Tavaputs Plateau named PR Spring are starting to be developed for their tar sand resource, there is concern for potential hydrologic connection between these ridgetops and perennial springs in adjacent canyons on which depend ranching families, livestock, wildlife and recreationalists. Samples were collected from perennial springs to examine possible progression with elevation of parameters such as temperature, specific conductance, pH, dissolved oxygen, isotopic tracers of phase change, water-rock interaction, and age since recharge. The groundwater age dates indicate that the springs are recharged locally. The progression of hydrogeochemical parameters with elevation, in combination with the relatively short groundwater residence times, indicate that the recharge zone for these springs includes the surrounding ridges, and thereby suggests a hydrologic connection between the mining, processing, disposal area and the springs. Estimations based on chemical thermodynamic approaches indicate that bitumen compounds will have greatly enhanced solubility in water that comes into contact with the residual bitumen-solvent mixture in disposed tailings relative to water that currently comes into contact with natural tar.


Asunto(s)
Monitoreo del Ambiente , Agua Subterránea/química , Yacimiento de Petróleo y Gas , Industria del Petróleo y Gas , Contaminantes Químicos del Agua/análisis , Minería , Utah
20.
Sci Total Environ ; 511: 489-500, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25576792

RESUMEN

We examined mercury (Hg) speciation in water and sediment of the Great Salt Lake and surrounding wetlands, a locale spanning fresh to hypersaline and oxic to anoxic conditions, in order to test the hypothesis that spatial and temporal variations in Hg concentration and methylation rates correspond to observed spatial and temporal trends in Hg burdens previously reported in biota. Water column, sediment, and pore water concentrations of methylmercury (MeHg) and total mercury (THg), as well as related aquatic chemical parameters were examined. Inorganic Hg(II)-methylation rates were determined in selected water column and sediment subsamples spiked with inorganic divalent mercury (204Hg(II)). Net production of Me204Hg was expressed as apparent first-order rate constants for methylation (kmeth), which were also expanded to MeHg production potential (MPP) rates via combination with tin reducible 'reactive' Hg(II) (Hg(II)R) as a proxy for bioavailable Hg(II). Notable findings include: 1) elevated Hg concentrations previously reported in birds and brine flies were spatially proximal to the measured highest MeHg concentrations, the latter occurring in the anoxic deep brine layer (DBL) of the Great Salt Lake; 2) timing of reduced Hg(II)-methylation rates in the DBL (according to both kmeth and MPP) coincides with reduced Hg burdens among aquatic invertebrates (brine shrimp and brine flies) that act as potential vectors of Hg propagation to the terrestrial ecosystem; 3) values of kmeth were found to fall within the range reported by other studies; and 4) MPP rates were on the lower end of the range reported in methodologically comparable studies, suggesting the possibility that elevated MeHg in the anoxic deep brine layer results from its accumulation and persistence in this quasi-isolated environment, due to the absence of light (restricting abiotic photo demethylation) and/or minimal microbiological demethylation.


Asunto(s)
Monitoreo del Ambiente , Lagos/química , Compuestos de Metilmercurio/análisis , Contaminantes Químicos del Agua/análisis , Metilación , Salinidad , Utah
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...