Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 13 de 13
1.
Am J Physiol Lung Cell Mol Physiol ; 324(6): L783-L798, 2023 06 01.
Article En | MEDLINE | ID: mdl-37039367

NR2F2 is expressed in endothelial cells (ECs) and Nr2f2 knockout produces lethal cardiovascular defects. In humans, reduced NR2F2 expression is associated with cardiovascular diseases including congenital heart disease and atherosclerosis. Here, NR2F2 silencing in human primary ECs led to inflammation, endothelial-to-mesenchymal transition (EndMT), proliferation, hypermigration, apoptosis-resistance, and increased production of reactive oxygen species. These changes were associated with STAT and AKT activation along with increased production of DKK1. Co-silencing DKK1 and NR2F2 prevented NR2F2-loss-induced STAT and AKT activation and reversed EndMT. Serum DKK1 concentrations were elevated in patients with pulmonary arterial hypertension (PAH) and DKK1 was secreted by ECs in response to in vitro loss of either BMPR2 or CAV1, which are genetic defects associated with the development of PAH. In human primary ECs, NR2F2 suppressed DKK1, whereas its loss conversely induced DKK1 and disrupted endothelial homeostasis, promoting phenotypic abnormalities associated with pathologic vascular remodeling. Activating NR2F2 or blocking DKK1 may be useful therapeutic targets for treating chronic vascular diseases associated with EC dysfunction.NEW & NOTEWORTHY NR2F2 loss in the endothelial lining of blood vessels is associated with cardiovascular disease. Here, NR2F2-silenced human endothelial cells were inflammatory, proliferative, hypermigratory, and apoptosis-resistant with increased oxidant stress and endothelial-to-mesenchymal transition. DKK1 was induced in NR2F2-silenced endothelial cells, while co-silencing NR2F2 and DKK1 prevented NR2F2-loss-associated abnormalities in endothelial signaling and phenotype. Activating NR2F2 or blocking DKK1 may be useful therapeutic targets for treating vascular diseases associated with endothelial dysfunction.


Pulmonary Arterial Hypertension , Vascular Diseases , Humans , Proto-Oncogene Proteins c-akt/metabolism , Endothelial Cells/metabolism , Vascular Diseases/metabolism , Pulmonary Arterial Hypertension/metabolism , Familial Primary Pulmonary Hypertension/metabolism , Inflammation/pathology , COUP Transcription Factor II/metabolism , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism
2.
Am J Physiol Lung Cell Mol Physiol ; 322(3): L315-L332, 2022 03 01.
Article En | MEDLINE | ID: mdl-35043674

Treatment with mineralocorticoid receptor (MR) antagonists beginning at the outset of disease, or early thereafter, prevents pulmonary vascular remodeling in preclinical models of pulmonary arterial hypertension (PAH). However, the efficacy of MR blockade in established disease, a more clinically relevant condition, remains unknown. Therefore, we investigated the effectiveness of two MR antagonists, eplerenone (EPL) and spironolactone (SPL), after the development of severe right ventricular (RV) dysfunction in the rat SU5416-hypoxia (SuHx) PAH model. Cardiac magnetic resonance imaging (MRI) in SuHx rats at the end of week 5, before study treatment, confirmed features of established disease including reduced RV ejection fraction and RV hypertrophy, pronounced septal flattening with impaired left ventricular filling and reduced cardiac index. Five weeks of treatment with either EPL or SPL improved left ventricular filling and prevented the further decline in cardiac index compared with placebo. Interventricular septal displacement was reduced by EPL whereas SPL effects were similar, but not significant. Although MR antagonists did not significantly reduce pulmonary artery pressure or vessel remodeling in SuHx rats with established disease, animals with higher drug levels had lower pulmonary pressures. Consistent with effects on cardiac function, EPL treatment tended to suppress MR and proinflammatory gene induction in the RV. In conclusion, MR antagonist treatment led to modest, but consistent beneficial effects on interventricular dependence after the onset of significant RV dysfunction in the SuHx PAH model. These results suggest that measures of RV structure and/or function may be useful endpoints in clinical trials of MR antagonists in patients with PAH.


Hypertension, Pulmonary , Pulmonary Arterial Hypertension , Ventricular Dysfunction, Right , Animals , Disease Models, Animal , Familial Primary Pulmonary Hypertension , Humans , Hypertension, Pulmonary/drug therapy , Hypoxia/drug therapy , Indoles , Mineralocorticoid Receptor Antagonists/pharmacology , Mineralocorticoid Receptor Antagonists/therapeutic use , Pyrroles , Rats , Ventricular Dysfunction, Right/drug therapy
3.
Nat Nanotechnol ; 16(9): 996-1003, 2021 09.
Article En | MEDLINE | ID: mdl-34155383

Unlike conventional antimicrobials, the study of bacterial resistance to silver nanoparticles (AgNPs) remains in its infancy and the mechanism(s) through which it evolves are limited and inconclusive. The central question remains whether bacterial resistance is driven by the AgNPs, released Ag(I) ions or a combination of these and other factors. Here, we show a specific resistance in an Escherichia coli K-12 MG1655 strain to subinhibitory concentrations of AgNPs, and not Ag(I) ions, as indicated by a statistically significant greater-than-twofold increase in the minimum inhibitory concentration occurring after eight repeated passages that was maintained after the AgNPs were removed and reintroduced. Whole-population genome sequencing identified a cusS mutation associated with the heritable resistance that possibly increased silver ion efflux. Finally, we rule out the effect of particle aggregation on resistance and suggest that the mechanism of resistance may be enhanced or mediated by flagellum-based motility.


Drug Resistance, Bacterial/genetics , Escherichia coli K12/genetics , Metal Nanoparticles/chemistry , Silver/adverse effects , Cell Movement/drug effects , Drug Resistance, Bacterial/drug effects , Escherichia coli K12/drug effects , Ions/adverse effects , Metal Nanoparticles/adverse effects , Microbial Sensitivity Tests , Silver/chemistry
4.
Environ Sci Nano ; 6(8): 2367-2378, 2019 Aug 01.
Article En | MEDLINE | ID: mdl-31528351

In biological systems, chemical and physical transformations of engineered silver nanomaterials (AgENMs) are mediated, in part, by proteins and other biomolecules. Metalloprotein interactions with AgENMs are also central in understanding toxicity and antimicrobial and resistance mechanisms. Despite their readily available thiolate and amine ligands, zinc finger (ZF) peptides have thus far escaped study in reaction with AgENMs and their Ag(I) oxidative dissolution product. We report spectroscopic studies that characterize AgENM and Ag(I) interactions with two ZF peptides that differ in sequence, but not in metal binding ligands: the ZF consensus peptide CP-CCHC and the C-terminal zinc finger domain of HIV-1 nucleocapsid protein p7 (NCp7_C). Both ZF peptides catalyze AgENM (10 and 40 nm, citrate coated) dissolution and agglomeration, two important AgENM transformations that impact bioreactivity. AgENMs and their oxidative dissolution product, Ag(I)(aq), mediate changes to ZF peptide structure and metalation as well. Spectroscopic titrations of Ag(I) into apo-ZF peptides show an Ag(I)-thiolate charge transfer band, indicative of Ag(I)-ZF binding. Fluorescence studies of the Zn(II)-NCp_7 complex indicate that the Ag(I) also effectively competes with the Zn(II) to drive Zn(II) displacement from the ZFs. Upon interaction with AgENMs, Zn(II) bound ZF peptides show a secondary structural change in circular dichroism spectroscopy toward an apo-like structure. The results suggest that Ag(I) and AgENMs may alter ZF protein function within the cell.

5.
Cancer Lett ; 417: 174-181, 2018 03 28.
Article En | MEDLINE | ID: mdl-29309816

Lysyl oxidase is an extracellular matrix, copper - dependent amine oxidase that catalyzes a key enzymatic step in the crosslinking of collagen and elastin. The enzyme is synthesized as a propeptide that is cleaved by procollagen - C - proteinase into two distinct parts: the mature form and the LOX propeptide. The mature enzyme plays a key role in modifying the extracellular matrix and as a result has been implicated in playing a role in the formation of cancer "niches" where tumors will develop and eventually metastasize. On the other hand, the LOX propeptide has been shown to have an inhibitory effect in the development of cancer tumors. New approaches are being developed to test the use of small molecule inhibitors on LOX; however, the lack of a crystal structure has hampered these efforts as it is extremely difficult to design selective inhibitors without knowing what the target receptor looks like. In this mini review we discuss the lysyl oxidase enzyme and its role several types of cancers.


Neoplasms/enzymology , Protein-Lysine 6-Oxidase/metabolism , Animals , Humans , Neoplasm Metastasis , Neoplasms/pathology , Neoplasms/prevention & control , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Protein-Lysine 6-Oxidase/antagonists & inhibitors , Small Molecule Libraries/pharmacology , Stem Cell Niche/drug effects , Tumor Microenvironment/drug effects
6.
Protein J ; 37(1): 47-57, 2018 02.
Article En | MEDLINE | ID: mdl-29127553

Lysyl oxidase (LOX) is a copper-dependent amine oxidase enzyme that catalyzes the formation of crosslinkages of collagen and elastin in connective tissues by oxidative deamination of lysine. Using site-directed mutagenesis, Histidine 303 has been shown to be a key residue that acts as the necessary catalytic base for this enzyme to function properly. Histidine 303 was mutated to isoleucine to remove catalytic activity and to aspartate and glutamate, respectively, in order to provide alternate residues that could act as a general base that could maintain catalytic activity. Overexpression of the H303I mutant yielded 3.9 mg of enzyme per liter of media, the H303D mutant yielded 3.3 mg of enzyme per liter of media, and the H303E mutant yielded 3.0 mg/L of media. Overexpression of wildtype LOX yielded 4.5 mg/L of media, which is a slight improvement from previous yields. Total copper incorporation for H303I was calculated to be 68% and no copper was detected for the H303D and H303E mutants. As LOX requires the self-processed cofactor lysyl tyrosyl quinone (LTQ) for activity, total LTQ content was obtained by reacting the enzyme with phenylhydrazine and using the previously reported extinction coefficient of 15.4 mM/cm. LTQ content for the wildtype enzyme was determined to be 92%, for H303I the total LTQ content was determined to be 36%, and no LTQ was detected for the H303D and H303E mutants. No catalytic activity was detected for any mutants when compared to the wildtype which has a previously reported activity of 0.11 U/mg. Comparison of excitation-emission matrices (EEM) of each of the mutants as compared to the wildtype indicate that all the mutations cause a change in the internal environment of the enzyme, albeit to varying degrees, as evidenced by the observed shifts.


Amino Acid Substitution , Histidine/chemistry , Mutagenesis, Site-Directed , Mutation, Missense , Protein-Lysine 6-Oxidase/chemistry , Catalysis , Histidine/genetics , Protein-Lysine 6-Oxidase/genetics
7.
J Am Chem Soc ; 139(49): 17767-17770, 2017 12 13.
Article En | MEDLINE | ID: mdl-29185732

Here, we demonstrate efficient energy transfer from near-infrared-emitting ortho-mercaptobenzoic acid-capped gold nanoparticles (AuNPs) to pendant ytterbium(III) cations. These functional materials combine the high molar absorptivity (1.21 × 106 M-1 cm-1) and broad excitation features (throughout the UV and visible regions) of AuNPs with the narrow emissive properties of lanthanides. Interaction between the AuNP ligand shell and ytterbium is determined using both nuclear magnetic resonance and electron microscopy measurements. In order to identify the mechanism of this energy transfer process, the distance of the ytterbium(III) from the surface of the AuNPs is systematically modulated by changing the size of the ligand appended to the AuNP. By studying the energy transfer efficiency from the various AuNP conjugates to pendant ytterbium(III) cations, a Dexter-type energy transfer mechanism is suggested, which is an important consideration for applications ranging from catalysis to energy harvesting. Taken together, these experiments lay a foundation for the incorporation of emissive AuNPs in energy transfer systems.

8.
Analyst ; 142(1): 11-29, 2016 12 19.
Article En | MEDLINE | ID: mdl-27901132

Colloidal inorganic nanoparticles are being used in an increasingly large number of applications ranging from biological imaging to television displays. In all cases, nanoparticle surface chemistry can significantly impact particle physical properties, processing, and performance. The first step in leveraging this tunability is to develop analytical approaches to describe surface chemical features. Some of the most basic descriptors of particle surface chemistry include the quantity, identity, and arrangement of ligands appended to the particle core. Here, we review approaches to quantify molecular ligand densities on nanoparticle surfaces and consider fundamental barriers to the accuracy of this analysis including parameters such as dispersity in colloidal nanoparticle samples, particle-ligand interactions, and currently available analytical techniques. Techniques reviewed include widely studied methods such as optical, atomic, vibrational, and nuclear magnetic resonance spectroscopies as well as emerging or niche approaches including electrospray-differential mobility analysis, pH-based methods, and X-ray photoelectron spectroscopy. Collectively, these studies elucidate surface chemistry architectures that accelerate both fundamental understanding of nanoscale physical phenomena and the implementation of these materials in a wide range of technologies.

9.
Langmuir ; 32(16): 3820-6, 2016 04 26.
Article En | MEDLINE | ID: mdl-27077550

Here, we compare the ligand exchange behaviors of silver nanoparticles synthesized in the presence of two different surface capping agents: poly(vinylpyrrolidone) (MW = 10 or 40 kDa) or trisodium citrate, and under either ambient or low-oxygen conditions. In all cases, we find that the polymer capping agent exhibits features of a weakly bound ligand, producing better ligand exchange efficiencies with an incoming thiolated ligand compared to citrate. The polymer capping agent also generates nanoparticles that are more susceptible to reactions with oxygen during both synthesis and ligand exchange. The influence of the original ligand on the outcome of ligand exchange reactions with an incoming thiolated ligand highlights important aspects of silver nanoparticle surface chemistry, crucial for applications ranging from photocatalysis to antimicrobials.

10.
Enzyme Res ; 2016: 5098985, 2016.
Article En | MEDLINE | ID: mdl-26942005

Lysyl oxidase is an important extracellular matrix enzyme that has not been fully characterized due to its low solubility. In order to circumvent the low solubility of this enzyme, three solubility tags (Nus-A, Thioredoxin (Trx), and Glutathione-S-Transferase (GST)) were engineered on the N-terminus of mature lysyl oxidase. Total enzyme yields were determined to be 1.5 mg for the Nus-A tagged enzyme (0.75 mg/L of media), 7.84 mg for the Trx tagged enzyme (3.92 mg/L of media), and 9.33 mg for the GST tagged enzyme (4.67 mg/L of media). Enzymatic activity was calculated to be 0.11 U/mg for the Nus-A tagged enzyme and 0.032 U/mg for the Trx tagged enzyme, and no enzymatic activity was detected for the GST tagged enzyme. All three solubility-tagged forms of the enzyme incorporated copper; however, the GST tagged enzyme appears to bind adventitious copper with greater affinity than the other two forms. The catalytic cofactor, lysyl tyrosyl quinone (LTQ), was determined to be 92% for the Nus-A and Trx tagged lysyl oxidase using the previously reported extinction coefficient of 15.4 mM(-1 )cm(-1). No LTQ was detected for the GST tagged lysyl oxidase. Given these data, it appears that Nus-A is the most suitable tag for obtaining soluble and active recombinant lysyl oxidase from E. coli culture.

11.
J Am Chem Soc ; 137(50): 15852-8, 2015 Dec 23.
Article En | MEDLINE | ID: mdl-26670347

We report the identification, description, and role of multinuclear metal-thiolate complexes in aqueous Au-Cu nanoparticle syntheses. The structure of these species was characterized by nuclear magnetic resonance spectroscopy, mass spectrometry, X-ray photoelectron spectroscopy, and X-ray absorption spectroscopy techniques. The observed structures were found to be in good agreement with thermodynamic growth trends predicted by first-principles calculations. The presence of metal-thiolate complexes is then shown to be critical for the formation of alloyed Au-Cu architectures in the small nanoparticle regime (diameter ∼2 nm). In the absence of mixed metal-thiolate precursors, nanoparticles form with a Cu-S shell and a Au-rich interior. Taken together, these results demonstrate that prenucleation species, which are discrete molecular precursors distinct from both initial reagents and final particle products, may provide an important new synthetic route to control final metal nanoparticle composition and composition architectures.

12.
J Am Chem Soc ; 137(45): 14423-9, 2015 Nov 18.
Article En | MEDLINE | ID: mdl-26544649

Small gold nanoparticles (∼1.4-2.2 nm core diameters) exist at an exciting interface between molecular and metallic electronic structures. These particles have the potential to elucidate fundamental physical principles driving nanoscale phenomena and to be useful in a wide range of applications. Here, we study the optoelectronic properties of aqueous, phosphine-terminated gold nanoparticles (core diameter = 1.7 ± 0.4 nm) after ligand exchange with a variety of sulfur-containing molecules. No emission is observed from these particles prior to ligand exchange, however the introduction of sulfur-containing ligands initiates photoluminescence. Further, small changes in sulfur substituents produce significant changes in nanoparticle photoluminescence features including quantum yield, which ranges from 0.13 to 3.65% depending on substituent. Interestingly, smaller ligands produce the most intense, highest energy, narrowest, and longest-lived emissions. Radiative lifetime measurements for these gold nanoparticle conjugates range from 59 to 2590 µs, indicating that even minor changes to the ligand substituent fundamentally alter the electronic properties of the luminophore itself. These results isolate the critical role of surface chemistry in the photoluminescence of small metal nanoparticles and largely rule out other mechanisms such as discrete (Au(I)-S-R)n impurities, differences in ligand densities, and/or core diameters. Taken together, these experiments provide important mechanistic insight into the relationship between gold nanoparticle near-infrared emission and pendant ligand architectures, as well as demonstrate the pivotal role of metal nanoparticle surface chemistry in tuning and optimizing emergent optoelectronic features from these nanostructures.

13.
Anal Chem ; 87(5): 2771-8, 2015 Mar 03.
Article En | MEDLINE | ID: mdl-25658511

We use nuclear magnetic resonance spectroscopy methods to quantify the extent of ligand exchange between different types of thiolated molecules on the surface of gold nanoparticles. Specifically, we determine ligand density values for single-moiety ligand shells and then use these data to describe ligand exchange behavior with a second, thiolated molecule. Using these techniques, we identify trends in gold nanoparticle functionalization efficiency with respect to ligand type, concentration, and reaction time as well as distinguish between functionalization pathways where the new ligand may either replace the existing ligand shell (exchange) or add to it ("backfilling"). Specifically, we find that gold nanoparticles functionalized with thiolated macromolecules, such as poly(ethylene glycol) (1 kDa), exhibit ligand exchange efficiencies ranging from 70% to 95% depending on the structure of the incoming ligand. Conversely, gold nanoparticles functionalized with small-molecule thiolated ligands exhibit exchange efficiencies as low as 2% when exposed to thiolated molecules under identical exchange conditions. Taken together, the reported results provide advances in the fundamental understanding of mixed ligand shell formation and will be important for the preparation of gold nanoparticles in a variety of biomedical, optoelectronic, and catalytic applications.

...