Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Fluids Barriers CNS ; 11(1): 4, 2014 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-24528926

RESUMEN

BACKGROUND: Cerebrospinal fluid absorption (CSF) at the cribriform plate is mediated by direct extracranial connections to the lymphatic system. Given the accessibility of these pharmacologically responsive vessels we hypothesized that the rate of CSF outflow can be modulated via the intranasal delivery of drugs known to affect lymphatic contractile activity. FINDINGS: Fluid was infused into the lateral ventricle of anesthetized sheep and inflow rate and CSF pressure measured during intranasal administration of pharmacological agents. CSF absorption was calculated at steady-state CSF pressures. The ability of a pharmacological agent to alter CSF absorption was related to the steady-state intracranial pressure (ICP), the concentration and the class of pharmacological agent delivered. An increase in drug concentration correlated with an increase in CSF absorption at high ICP (45 cm H2O, r = 0.42, p = 0.0058). Specifically, the delivery of NG-monomethyl L-arginine (L-NMMA) significantly increased CSF absorption by 2.29 fold over no treatment (2.29 ± 0.34 mL/min), while the thromboxane A2 analogue U46619 resulted in a 2.44 fold increase in CSF absorption over no treatment (2.44 ± 0.55 mL/min). Saline delivery did not significantly increase CSF absorption (0.88 ± 0.097 mL/min). A trend of increased CSF absorption upon noradrenaline delivery was observed: however, this did not reach statistical significance. Increasing drug concentrations inversely correlated with CSF outflow resistance across all drug classes (r = -0.26, p = 0.046). CONCLUSIONS: The administration of nebulized pharmacological agents intranasally has the potential to provide an alternate method to non-invasively modulate CSF absorption and outflow resistance.

2.
Fluids Barriers CNS ; 10: 24, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23845003

RESUMEN

BACKGROUND: The objective of this study was to examine host-shunt interactions in sheep with kaolin-induced hydrocephalus. METHODS: Forty-two sheep (29-40 kg) were utilized for this study. In 20 animals, various kaolin doses were injected into the cisterna magna including 10 and 50 mg/kg as well as 2-4 ml of a 25% kaolin suspension. Based on animal health and hydrocephalus development, 3 ml of a 25% kaolin suspension was chosen. In 16 animals, kaolin was administered and 6-8 days later, the animals received a custom made ventriculo-peritoneal shunt. In 8 animals ventricular CSF pressures were measured with a water manometer before kaolin administration and 7-8 days later. The sheep were allowed to survive for up to 9-12 weeks post-kaolin or until clinical status required euthanasia. Brains were assessed for morphological and histological changes. Ventricle/cerebrum cross sectional area ratios (V/C) were calculated from photographs of the sliced coronal planes immediately anterior to the interventricular foramina. RESULTS: Intraventricular pressures increased from 12.4±1.1 cm H2O to 41.3±3.5 cm H2O following kaolin injection (p < 0.0001, n = 8). In all animals, we observed kaolin on the basal surface of the brain and mild (V/C 0.03-0.10) to moderate (V/C >0.10) ventricular expansion. The animals lost weight between kaolin administration and shunting (33.7±1.2 kg versus 31.0±1.7 kg) with weights after shunting remaining stable up to sacrifice (31.6±2.2 kg). Of 16 shunted animals, 5 did well and were sacrificed 9-12 weeks post-kaolin. In the remainder, the study was terminated at various times due to deteriorating health. Hydrocephalus was associated with thinning of the corpus callosum, but no obvious loss of myelin staining, along with reactive astroglial (glial fibrillary acidic immunoreactive) and microglial (Iba1 immunoreactive) changes in the white matter. Ventricular shunts revealed choroid plexus ingrowth in 5/16, brain tissue ingrowth in 1/16, problems with shunt insertion in 3/16, occlusion by hemorrhagic-inflammatory material in 5/16, or no obstruction in 2/16. Free flowing CSF indicated that the peritoneal catheter was patent. CONCLUSIONS: Cerebrospinal fluid shunts in hydrocephalic sheep fail in ways that are reminiscent of human neurosurgical experience suggesting that this model may be helpful in the development of more effective shunt technology.

3.
Exp Eye Res ; 93(5): 586-91, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21810424

RESUMEN

Intraocular pressure (IOP) is the most important risk factor for glaucoma development and progression. Most anti-glaucoma treatments aim to lower IOP by enhancing aqueous humor drainage from the eye. Aqueous humor drainage occurs via well-characterized trabecular meshwork (TM) and uveoscleral (UVS) pathways, and recently described ciliary body lymphatics. The relative contribution of the lymphatic pathway to aqueous drainage is not known. We developed a sheep model to quantitatively assess lymphatic drainage along with TM and UVS outflows. This study describes that model and presents our initial findings. Following intracameral injection of (125)I-bovine serum albumin (BSA), lymph was continuously collected via cannulated cervical lymphatic vessels and the thoracic lymphatic duct over either a 3-h or 5-h time period. In the same animals, blood samples were collected from the right jugular vein every 15 min. Lymphatic and TM drainage were quantitatively assessed by measuring (125)I-BSA in lymph and plasma, respectively. Radioactive tracer levels were also measured in UVS and "other" ocular tissue, as well as periocular tissue harvested 3 and 5 h post-injection. Tracer recovered from UVS tissue was used to estimate UVS drainage. The amount of (125)I-BSA recovered from different fluid and tissue compartments was expressed as a percentage of total recovered tracer. Three hours after tracer injection, percentage of tracer recovered in lymph and plasma was 1.64% ± 0.89% and 68.86% ± 9.27%, respectively (n = 8). The percentage of tracer in UVS, other ocular and periocular tissues was 19.87% ± 5.59%, 4.30% ± 3.31% and 5.32% ± 2.46%, respectively. At 5 h (n = 2), lymphatic drainage was increased (6.40% and 4.96% vs. 1.64%). On the other hand, the percentage of tracer recovered from UVS and other ocular tissue had decreased, and the percentage from periocular tissue showed no change. Lymphatic drainage increased steadily over the 3 h post-injection period, while TM drainage increased rapidly - reaching a plateau at 30 min. This quantitative sheep model enables assessment of relative contributions of lymphatic drainage, TM and UVS outflows, and may help to better understand the effects of glaucoma agents on outflow pathways.


Asunto(s)
Humor Acuoso/fisiología , Linfa/fisiología , Sistema Linfático/fisiología , Modelos Animales , Esclerótica/metabolismo , Malla Trabecular/metabolismo , Úvea/metabolismo , Animales , Presión Intraocular/fisiología , Vasos Linfáticos/metabolismo , Albúmina Sérica Radioyodada , Ovinos , Tonometría Ocular
4.
Exp Eye Res ; 89(5): 810-9, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19729007

RESUMEN

Impaired aqueous humor flow from the eye may lead to elevated intraocular pressure and glaucoma. Drainage of aqueous fluid from the eye occurs through established routes that include conventional outflow via the trabecular meshwork, and an unconventional or uveoscleral outflow pathway involving the ciliary body. Based on the assumption that the eye lacks a lymphatic circulation, the possible role of lymphatics in the less well defined uveoscleral pathway has been largely ignored. Advances in lymphatic research have identified specific lymphatic markers such as podoplanin, a transmembrane mucin-type glycoprotein, and lymphatic vessel endothelial hyaluronan receptor-1 (LYVE-1). Lymphatic channels were identified in the human ciliary body using immunofluorescence with D2-40 antibody for podoplanin, and LYVE-1 antibody. In keeping with the criteria for lymphatic vessels in conjunctiva used as positive control, D2-40 and LYVE-1-positive lymphatic channels in the ciliary body had a distinct lumen, were negative for blood vessel endothelial cell marker CD34, and were surrounded by either discontinuous or no collagen IV-positive basement membrane. Cryo-immunogold electron microscopy confirmed the presence D2-40-immunoreactivity in lymphatic endothelium in the human ciliary body. Fluorescent nanospheres injected into the anterior chamber of the sheep eye were detected in LYVE-1-positive channels of the ciliary body 15, 30, and 45 min following injection. Four hours following intracameral injection, Iodine-125 radio-labeled human serum albumin injected into the sheep eye (n = 5) was drained preferentially into cervical, retropharyngeal, submandibular and preauricular lymph nodes in the head and neck region compared to reference popliteal lymph nodes (P < 0.05). These findings collectively indicate the presence of distinct lymphatic channels in the human ciliary body, and that fluid and solutes flow at least partially through this system. The discovery of a uveolymphatic pathway in the eye is novel and highly relevant to studies of glaucoma and other eye diseases.


Asunto(s)
Endotelio Linfático/anatomía & histología , Vasos Linfáticos/anatomía & histología , Úvea/anatomía & histología , Anciano , Anciano de 80 o más Años , Animales , Humor Acuoso/metabolismo , Membrana Basal/anatomía & histología , Membrana Basal/química , Transporte Biológico , Colágeno Tipo IV/análisis , Endotelio Linfático/química , Técnica del Anticuerpo Fluorescente , Humanos , Linfa/metabolismo , Vasos Linfáticos/química , Vasos Linfáticos/metabolismo , Glicoproteínas de Membrana/análisis , Microscopía Confocal , Microscopía Inmunoelectrónica , Persona de Mediana Edad , Ovinos , Factores de Tiempo , Úvea/química , Úvea/metabolismo , Proteínas de Transporte Vesicular/análisis
5.
Exp Neurol ; 211(2): 351-61, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18433747

RESUMEN

Communicating hydrocephalus (CH) occurs frequently, but clinically-relevant animal models amenable to diagnostic imaging and cerebrospinal fluid shunting are not available. In order to develop and characterize models of subarachnoid space (SAS) obstruction at the basal cisterns (BC) or cerebral convexities (CX), 25% kaolin was injected in adult female Sprague-Dawley rats following halothane anesthesia; intact- or saline-injected animals served as controls. For BC animals (n=28 hydrocephalics, n=20 controls), an anterior approach to the C1-clivus interval was employed and 30 microl of kaolin or saline was injected. For CX injections (n=13 hydrocephalics, n=3 controls), 50-60 microl of kaolin was injected bilaterally after separating the partitions in the SAS. In BC-injected rats, kaolin was observed grossly in the basal cisterns but not in the cisterna magna or at the foramina of Luschka, indicating that communicating (or extra-ventricular)--not obstructive--hydrocephalus had been induced. Following ketamine/xylazine anesthesia, magnetic resonance imaging (MRI) of gadolinium injected into the lateral ventricle also demonstrated CSF flow from the foramina of Luschka. MRI also revealed that ventriculomegaly progressed steadily in BC animals and by 2 weeks post-kaolin the mean Evan's ratio (frontal horn) increased significantly (mean 0.45 compared to 0.31 in intact- and 0.34 in saline-injected controls; p<0.001 for each). CX animals exhibited kaolin deposits covering approximately 80% of the cerebral hemispheres and developed noticeable ventriculomegaly (mean Evan's ratio 0.40), which was significant relative to intact animals (p=0.011) but not saline-injected controls. Surprisingly, ventriculomegaly following CX injections was less severe and much more protracted, requiring 3-4 months to develop compared to ventriculomegaly produced by BC obstruction. No hydrocephalic animals demonstrated obvious neurological deficits, but BC-injected animals that subsequently developed more severe ventriculomegaly exhibited nasal discharges and "coughing" for several days following kaolin injection. The new BC model is relevant because the clinical presentation of CH in children is often associated with obstruction at this site, while the CX model may be more representative of late adult onset normal pressure hydrocephalus.


Asunto(s)
Corteza Cerebral/diagnóstico por imagen , Modelos Animales de Enfermedad , Hidrocefalia/diagnóstico por imagen , Caolín/toxicidad , Espacio Subaracnoideo/diagnóstico por imagen , Factores de Edad , Animales , Corteza Cerebral/efectos de los fármacos , Cisterna Magna/diagnóstico por imagen , Cisterna Magna/efectos de los fármacos , Femenino , Humanos , Hidrocefalia/inducido químicamente , Radiografía , Ratas , Ratas Sprague-Dawley , Espacio Subaracnoideo/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...