Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 14: 1219250, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37744358

RESUMEN

Antiretroviral therapy (ART) is not curative due to the existence of cellular reservoirs of latent HIV-1 that persist during therapy. Current research efforts to cure HIV-1 infection include "shock and kill" strategies to disrupt latency using small molecules or latency-reversing agents (LRAs) to induce expression of HIV-1 enabling cytotoxic immune cells to eliminate infected cells. The modest success of current LRAs urges the field to identify novel drugs with increased clinical efficacy. Aminobisphosphonates (N-BPs) that include pamidronate, zoledronate, or alendronate, are the first-line treatment of bone-related diseases including osteoporosis and bone malignancies. Here, we show the use of N-BPs as a novel class of LRA: we found in ex vivo assays using primary cells from ART-suppressed people living with HIV-1 that N-BPs induce HIV-1 from latency to levels that are comparable to the T cell activator phytohemagglutinin (PHA). RNA sequencing and mechanistic data suggested that reactivation may occur through activation of the activator protein 1 signaling pathway. Stored samples from a prior clinical trial aimed at analyzing the effect of alendronate on bone mineral density, provided further evidence of alendronate-mediated latency reversal and activation of immune effector cells. Decay of the reservoir measured by IPDA was however not detected. Our results demonstrate the novel use of N-BPs to reverse HIV-1 latency while inducing immune effector functions. This preliminary evidence merits further investigation in a controlled clinical setting possibly in combination with therapeutic vaccination.


Asunto(s)
Infecciones por VIH , Seropositividad para VIH , VIH-1 , Humanos , Infecciones por VIH/tratamiento farmacológico , Activación Viral , Latencia del Virus , Alendronato/uso terapéutico , Alendronato/farmacología
2.
bioRxiv ; 2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36798291

RESUMEN

Antiretroviral therapy (ART) is not curative due to the existence of cellular reservoirs of latent HIV-1 that persist during therapy. Current research efforts to cure HIV-1 infection include "shock and kill" strategies to disrupt latency using small molecules or latency-reversing agents (LRAs) to induce expression of HIV-1 enabling cytotoxic immune cells to eliminate infected cells. The modest success of current LRAs urges the field to identify novel drugs with increased clinical efficacy. Aminobisphosphonates (N-BPs) that include pamidronate, zoledronate, or alendronate, are the first-line treatment of bone-related diseases including osteoporosis and bone malignancies. Here, we show the use of N-BPs as a novel class of LRA: we found in ex vivo assays using primary cells from ART-suppressed people living with HIV-1 that N-BPs induce HIV-1 from latency to levels that are comparable to the T cell activator phytohemagglutinin (PHA). RNA sequencing and mechanistic data suggested that reactivation may occur through activation of the activator protein 1 signaling pathway. Stored samples from a prior clinical trial aimed at analyzing the effect of alendronate on bone mineral density, provided further evidence of alendronate-mediated latency reversal and activation of immune effector cells. Decay of the reservoir measured by IPDA was however not detected. Our results demonstrate the novel use of N-BPs to reverse HIV-1 latency while inducing immune effector functions. This preliminary evidence merits further investigation in a controlled clinical setting possibly in combination with therapeutic vaccination.

3.
Sci Adv ; 7(22)2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-34039598

RESUMEN

Global expansion of aquaculture and agriculture facilitates disease emergence and catalyzes transmission to sympatric wildlife populations. The health of wild salmon stocks critically concerns Indigenous peoples, commercial and recreational fishers, and the general public. Despite potential impact of viral pathogens such as Piscine orthoreovirus-1 (PRV-1) on endangered wild salmon populations, their epidemiology in wild fish populations remains obscure, as does the role of aquaculture in global and local spread. Our phylogeographic analyses of PRV-1 suggest that development of Atlantic salmon aquaculture facilitated spread from Europe to the North and South East Pacific. Phylogenetic analysis and reverse transcription polymerase chain reaction surveillance further illuminate the circumstances of emergence of PRV-1 in the North East Pacific and provide strong evidence for Atlantic salmon aquaculture as a source of infection in wild Pacific salmon. PRV-1 is now an important infectious agent in critically endangered wild Pacific salmon populations, fueled by aquacultural transmission.


Asunto(s)
Enfermedades de los Peces , Infecciones por Reoviridae , Salmo salar , Animales , Acuicultura , Enfermedades de los Peces/epidemiología , Filogenia , Infecciones por Reoviridae/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA