Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Appl Microbiol ; 134(6)2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37296327

RESUMEN

AIMS: The care of patients undergoing long-term urethral catheterization is frequently complicated by Proteus mirabilis infection. This organism forms dense, crystalline biofilms, which block catheters leading to serious clinical conditions. However, there are currently no truly effective approaches to control this problem. Here, we describe the development of a novel theranostic catheter coating, to simultaneously provide early warning of blockage, and actively delay crystalline biofilm formation. METHODS AND RESULTS: The coating comprises of a pH sensitive upper polymer layer (poly(methyl methacrylate-co-methacrylic acid); Eudragit S 100®) and a hydrogel base layer of poly(vinyl alcohol), which is loaded with therapeutic agents (acetohydroxamic acid or ciprofloxacin hydrochloride) and a fluorescent dye, 5(6)-carboxyfluorescein (CF). The elevation of urinary pH due to P. mirabilis urease activity results in the dissolution of the upper layer and release of cargo agents contained in the base layer. Experiments using in vitro models, which were representative of P. mirabilis catheter-associated urinary tract infections, demonstrated that these coatings significantly delay time taken for catheters to block. Coatings containing both CF dye and ciprofloxacin HCl were able to provide an average of ca. 79 h advanced warning of blockage and extend catheter lifespan ca. 3.40-fold. CONCLUSIONS: This study has demonstrated the potential for theranostic, infection-responsive coatings to form a promising approach to combat catheter encrustation and actively delay blockage.


Asunto(s)
Infecciones por Proteus , Infecciones Urinarias , Humanos , Catéteres Urinarios , Cateterismo Urinario/efectos adversos , Infecciones por Proteus/prevención & control , Infecciones por Proteus/etiología , Proteus mirabilis , Infecciones Urinarias/prevención & control , Biopelículas
2.
Biosens Bioelectron ; 203: 114027, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35114463

RESUMEN

Therapeutic monoclonal antibodies (mAbs) are successful biomedicines; however, evaluation of their pharmacokinetics and pharmacodynamics demands highly specific discrimination from human immunoglobulin G naturally present in the blood. Here, we developed a novel anti-idiotype aptamer (termed A14#1) with extraordinary specificity against the anti-vascular endothelial growth factor therapeutic mAb, bevacizumab. Structural analysis of the antibody-aptamer complex showed that several bases of A14#1 recognized only the complementarity determining region (CDR) of bevacizumab, thereby contributing to its extraordinary specificity. As the CDR of bevacizumab is predicted to be highly positively charged under mildly acidic conditions and that DNA is negatively charged, the affinity of A14#1 to bevacizumab markedly increased at pH 4.7 (KD = 44 pM) than at pH 7.4 (KD = 12 nM). A14#1-based electrochemical detection method capable of detecting 31 pM of bevacizumab at pH 4.7 was thus developed. A14#1 could be potentially useful for therapeutic drug measurement as a novel ligand of bevacizumab.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Anticuerpos Monoclonales , Afinidad de Anticuerpos , Aptámeros de Nucleótidos/química , Regiones Determinantes de Complementariedad/química , Regiones Determinantes de Complementariedad/genética , Humanos , Concentración de Iones de Hidrógeno
3.
Front Microbiol ; 12: 730071, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34803947

RESUMEN

Phage bacteria interactions can affect structure, dynamics, and function of microbial communities. In the context of biological wastewater treatment (BWT), the presence of phages can alter the efficiency of the treatment process and influence the quality of the treated effluent. The active role of phages in BWT has been demonstrated, but many questions remain unanswered regarding the diversity of phages in these engineered environments, the dynamics of infection, the determination of bacterial hosts, and the impact of their activity in full-scale processes. A deeper understanding of the phage ecology in BWT can lead the improvement of process monitoring and control, promote higher influent quality, and potentiate the use of phages as biocontrol agents. In this review, we highlight suitable methods for studying phages in wastewater adapted from other research fields, provide a critical overview on the current state of knowledge on the effect of phages on structure and function of BWT bacterial communities, and highlight gaps, opportunities, and priority questions to be addressed in future research.

4.
ACS Infect Dis ; 7(5): 1283-1296, 2021 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-33843198

RESUMEN

The contribution of the gut microbiome to human health has long been established, with normal gut microbiota conferring protection against invasive pathogens. Antibiotics can disrupt the microbial balance of the gut, resulting in disease and the development of antimicrobial resistance. The effect of antibiotic administration route on gut dysbiosis remains under-studied to date, with conflicting evidence on the differential effects of oral and parenteral delivery. We have profiled the rat gut microbiome following treatment with commonly prescribed antibiotics (amoxicillin and levofloxacin), via either oral or intravenous administration. Fecal pellets were collected over a 13-day period and bacterial populations were analyzed by 16S rRNA gene sequencing. Significant dysbiosis was observed in all treatment groups, regardless of administration route. More profound dysbiotic effects were observed following amoxicillin treatment than those with levofloxacin, with population richness and diversity significantly reduced, regardless of delivery route. The effect on specific taxonomic groups was assessed, revealing significant disruption following treatment with both antibiotics. Enrichment of a number of groups containing known gut pathogens was observed, in particular, with amoxicillin, such as the family Enterobacteriaceae. Depletion of other commensal groups was also observed. The degree of dysbiosis was significantly reduced toward the end of the sampling period, as bacterial populations began to return to pretreatment composition. Richness and diversity levels appeared to return to pretreatment levels more quickly in intravenous groups, suggesting convenient parenteral delivery systems may have a role to play in reducing longer term gut dysbiosis in the treatment of infection.


Asunto(s)
Microbioma Gastrointestinal , Animales , Antibacterianos , Disbiosis/inducido químicamente , Enterobacteriaceae , ARN Ribosómico 16S/genética , Ratas
5.
Appl Microbiol Biotechnol ; 105(3): 1063-1078, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33427933

RESUMEN

Members of the human gut microbiota use glycoside hydrolase (GH) enzymes, such as ß-galactosidases, to forage on host mucin glycans and dietary fibres. A human faecal metagenomic fosmid library was constructed and functionally screened to identify novel ß-galactosidases. Out of the 16,000 clones screened, 30 ß-galactosidase-positive clones were identified. The ß-galactosidase gene found in the majority of the clones was BAD_1582 from Bifidobacterium adolescentis, subsequently named bgaC. This gene was cloned with a hexahistidine tag, expressed in Escherichia coli and His-tagged-BgaC was purified using Ni2+-NTA affinity chromatography and size filtration. The enzyme had optimal activity at pH 7.0 and 37 °C, with a wide range of pH (4-10) and temperature (0-40 °C) stability. It required a divalent metal ion co-factor; maximum activity was detected with Mg2+, while Cu2+ and Mn2+ were inhibitory. Kinetic parameters were determined using ortho-nitrophenyl-ß-D-galactopyranoside (ONPG) and lactose substrates. BgaC had a Vmax of 107 µmol/min/mg and a Km of 2.5 mM for ONPG and a Vmax of 22 µmol/min/mg and a Km of 3.7 mM for lactose. It exhibited low product inhibition by galactose with a Ki of 116 mM and high tolerance for glucose (66% activity retained in presence of 700 mM glucose). In addition, BgaC possessed transglycosylation activity to produce galactooligosaccharides (GOS) from lactose, as determined by TLC and HPLC analysis. The enzymatic characteristics of B. adolescentis BgaC make it an ideal candidate for dairy industry applications and prebiotic manufacture.Key points• Bifidobacterium adolescentis BgaC ß-galactosidase was selected from human faecal metagenome.• BgaC possesses sought-after properties for biotechnology, e.g. low product inhibition.• BgaC has transglycosylation activity producing prebiotic oligosaccharides. Graphical Abstract.


Asunto(s)
Bifidobacterium adolescentis , Galactosa , Humanos , Concentración de Iones de Hidrógeno , Lactosa , Metagenoma , Oligosacáridos , Temperatura , beta-Galactosidasa/genética
6.
Viruses ; 12(6)2020 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-32486377

RESUMEN

Burkholderia species have environmental, industrial and medical significance, and are important opportunistic pathogens in individuals with cystic fibrosis (CF). Using a combination of existing and newly determined genome sequences, this study investigated prophage carriage across the species B. vietnamiensis, and also isolated spontaneously inducible prophages from a reference strain, G4. Eighty-one B. vietnamiensis genomes were bioinformatically screened for prophages using PHASTER (Phage Search Tool Enhanced Release) and prophage regions were found to comprise up to 3.4% of total genetic material. Overall, 115 intact prophages were identified and there was evidence of polylysogeny in 32 strains. A novel, inducible Mu-like phage (vB_BvM-G4P1) was isolated from B. vietnamiensis G4 that had lytic activity against strains of five Burkholderia species prevalent in CF infections, including the Boston epidemic B. dolosa strain SLC6. The cognate prophage to vB_BvM-G4P1 was identified in the lysogen genome and was almost identical (>93.5% tblastx identity) to prophages found in 13 other B. vietnamiensis strains (17% of the strain collection). Phylogenomic analysis determined that the G4P1-like prophages were widely distributed across the population structure of B. vietnamiensis. This study highlights how genomic characterization of Burkholderia prophages can lead to the discovery of novel bacteriophages with potential therapeutic or biotechnological applications.


Asunto(s)
Burkholderia/virología , Lisogenia , Profagos/patogenicidad , Burkholderia/genética , Infecciones por Burkholderia/microbiología , Cromosomas Bacterianos/genética , Fibrosis Quística/complicaciones , Fibrosis Quística/microbiología , Genoma Bacteriano/genética , Genoma Viral/genética , Humanos , Lisogenia/fisiología , Microscopía Electrónica de Transmisión , Filogenia , Profagos/genética , Profagos/fisiología , Activación Viral
7.
Front Microbiol ; 10: 1783, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31447809

RESUMEN

Proteus mirabilis often complicates the care of catheterized patients through the formation of crystalline biofilms which block urine flow. Bacteriophage therapy has been highlighted as a promising approach to control this problem, but relatively few phages infecting P. mirabilis have been characterized. Here we characterize five phages capable of infecting P. mirabilis, including those shown to reduce biofilm formation, and provide insights regarding the wider ecological and evolutionary relationships of these phages. Transmission electron microscopy (TEM) imaging of phages vB_PmiP_RS1pmA, vB_PmiP_RS1pmB, vB_PmiP_RS3pmA, and vB_PmiP_RS8pmA showed that all share morphologies characteristic of the Podoviridae family. The genome sequences of vB_PmiP_RS1pmA, vB_PmiP_RS1pmB, and vB_PmiP_RS3pmA showed these are species of the same phage differing only by point mutations, and are closely related to vB_PmiP_RS8pmA. Podophages characterized in this study were also found to share similarity in genome architecture and composition to other previously described P. mirabilis podophages (PM16 and PM75). In contrast, vB_PimP_RS51pmB showed morphology characteristic of the Myoviridae family, with no notable similarity to other phage genomes examined. Ecogenomic profiling of all phages revealed no association with human urinary tract viromes, but sequences similar to vB_PimP_RS51pmB were found within human gut, and human oral microbiomes. Investigation of wider host-phage evolutionary relationships through tetranucleotide profiling of phage genomes and bacterial chromosomes, indicated vB_PimP_RS51pmB has a relatively recent association with Morganella morganii and other non-Proteus members of the Morganellaceae family. Subsequent host range assays confirmed vB_PimP_RS51pmB can infect M. morganii.

8.
Methods Mol Biol ; 2021: 139-158, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31309503

RESUMEN

Urethral catheters are among the most widely used medical devices, applied to manage a wide range of conditions in hospital, community, and care home settings. In long-term catheterized individuals, infection with Proteus mirabilis frequently complicates the care of patients owing to formation of extensive crystalline biofilms. Here we describe the use of an in vitro bladder model of the catheterized urinary tract and associated analyses to study P. mirabilis crystalline biofilm formation. The model originally described by Stickler et al. (1999, 310:494-501, Methods Enzymol) replicates a complete sterile closed drainage system as used in clinical practice, and permits formation of biofilms directly on catheters under conditions representative of those encountered in vivo. Models may be used to replicate either established infection or early stage colonization, and we describe a range of associated methods for quantification and visualization of biofilms formed on catheters. These methods are also easily adapted to study catheter-associated biofilm formation by other urinary tract pathogens.


Asunto(s)
Infecciones Relacionadas con Catéteres/diagnóstico , Infecciones por Proteus/diagnóstico , Proteus mirabilis/fisiología , Infecciones Urinarias/microbiología , Técnicas Bacteriológicas , Biopelículas , Humanos , Técnicas In Vitro , Modelos Biológicos , Proteus mirabilis/aislamiento & purificación , Catéteres Urinarios/microbiología
9.
J Chromatogr A ; 1600: 127-136, 2019 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-31047664

RESUMEN

Faeces are comprised of a wide array of metabolites arising from the circulatory system as well as the human microbiome. A global metabolite analysis (metabolomics) of faecal extracts offers the potential to uncover new compounds which may be indicative of the onset of bowel diseases such as colorectal cancer (CRC). To date, faecal metabolomics is still in its infancy and the compounds of low abundance present in faecal extracts poorly characterised. In this study, extracts of faeces from healthy subjects were profiled using a sensitive nanoflow-nanospray LC-MS platform which resulted in highly repeatable peak retention times (<2% CV) and intensities (<15% CV). Analysis of the extracts revealed wide coverage of the faecal metabolome including detection of low abundant signalling compounds such as sex steroids and eicosanoids, alongside highly abundant pharmaceuticals and tetrapyrrole metabolites. A small pilot study investigating differences in metabolomics profiles of faecal samples obtained from 7 CRC, 25 adenomatous polyp and 26 healthy groups revealed that secondary bile acids, conjugated androgens, eicosanoids, phospholipids and an unidentified haem metabolite were potential classes of metabolites that discriminated between the CRC and control sample groups. However, much larger follow up studies are needed to confirm which components of the faecal metabolome are associated with actual CRC disease rather than dietary influences. This study reveals the potential of nanospray-nanoflow LC-MS profiling of faecal samples from large scale cohort studies for uncovering the role of the faecal metabolome in colorectal disease formation.


Asunto(s)
Cromatografía Liquida , Heces/química , Metaboloma , Espectrometría de Masa por Ionización de Electrospray , Ácidos y Sales Biliares/análisis , Eicosanoides/análisis , Femenino , Voluntarios Sanos , Humanos , Masculino , Metabolómica , Fosfolípidos/análisis , Proyectos Piloto
10.
Proc Inst Mech Eng H ; 233(1): 68-83, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29807465

RESUMEN

Urinary catheters have been used on an intermittent or indwelling basis for centuries, in order to relieve urinary retention and incontinence. Nevertheless, the use of urinary catheters in the clinical setting is fraught with complication, the most common of which is the development of nosocomial urinary tract infections, known as catheter-associated urinary tract infections. Infections of this nature are not only significant owing to their high incidence rate and subsequent economic burden but also to the severe medical consecutions that result. A range of techniques have been employed in recent years, utilising various technologies in attempts to counteract the perilous medical cascade following catheter blockage. This review will focus on the current advancement (within the last 10 years) in prevention of encrustation and blockage of long-term indwelling catheters both from engineering and medical perspectives, with particular emphasis on the importance of stimuli-responsive systems.


Asunto(s)
Catéteres de Permanencia , Ingeniería/métodos , Catéteres Urinarios , Antibacterianos/farmacología , Catéteres de Permanencia/efectos adversos , Falla de Equipo , Humanos
11.
Artículo en Inglés | MEDLINE | ID: mdl-29963501

RESUMEN

Biofilm formation in wounds is considered a major barrier to successful treatment, and has been associated with the transition of wounds to a chronic non-healing state. Here, we present a novel laboratory model of wound biofilm formation using ex-vivo porcine skin and a custom burn wound array device. The model supports high-throughput studies of biofilm formation and is compatible with a range of established methods for monitoring bacterial growth, biofilm formation, and gene expression. We demonstrate the use of this model by evaluating the potential for bacteriophage to control biofilm formation by Staphylococcus aureus, and for population density dependant expression of S. aureus virulence factors (regulated by the Accessory Gene Regulator, agr) to signal clinically relevant wound infection. Enumeration of colony forming units and metabolic activity using the XTT assay, confirmed growth of bacteria in wounds and showed a significant reduction in viable cells after phage treatment. Confocal laser scanning microscopy confirmed the growth of biofilms in wounds, and showed phage treatment could significantly reduce the formation of these communities. Evaluation of agr activity by qRT-PCR showed an increase in activity during growth in wound models for most strains. Activation of a prototype infection-responsive dressing designed to provide a visual signal of wound infection, was related to increased agr activity. In all assays, excellent reproducibility was observed between replicates using this model.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Quemaduras/microbiología , Piel/lesiones , Staphylococcus aureus/crecimiento & desarrollo , Infección de Heridas/prevención & control , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Quemaduras/patología , Quemaduras/veterinaria , Humanos , Terapia de Fagos/veterinaria , Reproducibilidad de los Resultados , Piel/patología , Infecciones Estafilocócicas/patología , Infecciones Estafilocócicas/terapia , Infecciones Estafilocócicas/veterinaria , Infecciones Estafilocócicas/virología , Staphylococcus aureus/patogenicidad , Staphylococcus aureus/fisiología , Staphylococcus aureus/virología , Porcinos , Transactivadores/genética , Transactivadores/metabolismo , Factores de Virulencia/genética , Factores de Virulencia/fisiología , Infección de Heridas/terapia , Infección de Heridas/veterinaria , Infección de Heridas/virología
12.
ISME J ; 12(4): 942-958, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29259289

RESUMEN

Just as the expansion in genome sequencing has revealed and permitted the exploitation of phylogenetic signals embedded in bacterial genomes, the application of metagenomics has begun to provide similar insights at the ecosystem level for microbial communities. However, little is known regarding this aspect of bacteriophage associated with microbial ecosystems, and if phage encode discernible habitat-associated signals diagnostic of underlying microbiomes. Here we demonstrate that individual phage can encode clear habitat-related 'ecogenomic signatures', based on relative representation of phage-encoded gene homologues in metagenomic data sets. Furthermore, we show the ecogenomic signature encoded by the gut-associated ɸB124-14 can be used to segregate metagenomes according to environmental origin, and distinguish 'contaminated' environmental metagenomes (subject to simulated in silico human faecal pollution) from uncontaminated data sets. This indicates phage-encoded ecological signals likely possess sufficient discriminatory power for use in biotechnological applications, such as development of microbial source tracking tools for monitoring water quality.


Asunto(s)
Bacteriófagos/genética , Genoma Viral , Metagenoma , Ecosistema , Monitoreo del Ambiente , Heces/virología , Tracto Gastrointestinal/virología , Humanos , Metagenómica , Microbiota
13.
Sci Rep ; 7(1): 12222, 2017 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-28939900

RESUMEN

Proteus mirabilis forms extensive crystalline biofilms on indwelling urethral catheters that block urine flow and lead to serious clinical complications. The Bcr/CflA efflux system has previously been identified as important for development of P. mirabilis crystalline biofilms, highlighting the potential for efflux pump inhibitors (EPIs) to control catheter blockage. Here we evaluate the potential for drugs already used in human medicine (fluoxetine and thioridazine) to act as EPIs in P. mirabilis, and control crystalline biofilm formation. Both fluoxetine and thioridazine inhibited efflux in P. mirabilis, and molecular modelling predicted both drugs interact strongly with the biofilm-associated Bcr/CflA efflux system. Both EPIs were also found to significantly reduce the rate of P. mirabilis crystalline biofilm formation on catheters, and increase the time taken for catheters to block. Swimming and swarming motilies in P. mirabilis were also significantly reduced by both EPIs. The impact of these drugs on catheter biofilm formation by other uropathogens (Escherichia coli, Pseudomonas aeruginosa) was also explored, and thioridazine was shown to also inhibit biofilm formation in these species. Therefore, repurposing of existing drugs with EPI activity could be a promising approach to control catheter blockage, or biofilm formation on other medical devices.


Asunto(s)
Infecciones Relacionadas con Catéteres/prevención & control , Fluoxetina/farmacología , Infecciones por Proteus/prevención & control , Proteus mirabilis/efectos de los fármacos , Tioridazina/farmacología , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Biopelículas/efectos de los fármacos , Infecciones Relacionadas con Catéteres/microbiología , Catéteres de Permanencia/efectos adversos , Catéteres de Permanencia/microbiología , Reposicionamiento de Medicamentos , Fluoxetina/química , Humanos , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/metabolismo , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Infecciones por Proteus/microbiología , Proteus mirabilis/fisiología , Tioridazina/química , Cateterismo Urinario/efectos adversos , Cateterismo Urinario/instrumentación , Catéteres Urinarios/efectos adversos , Catéteres Urinarios/microbiología
14.
Emerg Top Life Sci ; 1(4): 351-362, 2017 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-33525769

RESUMEN

Advances in next-generation sequencing technologies and the application of metagenomic approaches have fuelled an exponential increase in our understanding of the human gut microbiome. These approaches are now also illuminating features of the diverse and abundant collection of viruses (termed the virome) subsisting with the microbial ecosystems residing within the human holobiont. Here, we focus on the current and emerging knowledge of the human gut virome, in particular on viruses infecting bacteria (bacteriophage or phage), which are a dominant component of this viral community. We summarise current insights regarding the form and function of this 'human gut phageome' and highlight promising avenues for future research. In doing so, we discuss the potential for phage to drive ecological functioning and evolutionary change within this important microbial ecosystem, their contribution to modulation of host-microbiome interactions and stability of the community as a whole, as well as the potential role of the phageome in human health and disease. We also consider the emerging concepts of a 'core healthy gut phageome' and the putative existence of 'viral enterotypes' and 'viral dysbiosis'.

15.
J Mater Chem B ; 5(27): 5403-5411, 2017 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-32264080

RESUMEN

The crystalline biofilms of Proteus mirabilis can seriously complicate the care of patients undergoing long-term indwelling urinary catheterisation. Expression of bacterial urease causes a significant increase in urinary pH, leading to the supersaturation and precipitation of struvite and apatite crystals. These crystals become lodged within the biofilm, resulting in the blockage of urine flow through the catheter. Here, we describe an infection-responsive surface coating for urinary catheters, which releases a therapeutic dose of bacteriophage in response to elevated urinary pH, in order to delay catheter blockage. The coating employs a dual-layered system comprising of a lower hydrogel 'reservoir' layer impregnated with bacteriophage, capped by a 'trigger' layer of the pH-responsive polymer poly(methyl methacrylate-co-methacrylic acid) (EUDRAGIT®S 100). Evaluation of prototype coatings using a clinically reflective in vitro bladder model system showed that catheter blockage time was doubled (13 h to 26 h (P < 0.05)) under conditions of established infection (108 CFU ml-1) in response to a 'burst-release' of bacteriophage (108 PFU ml-1). Coatings were stable both in the absence of infection, and in the presence of urease-negative bacteria. Quantitative and visual analysis of crystalline biofilm reduction show that bacteriophage constitute a promising strategy for the prevention of catheter blockage, a clinical problem for which there is currently no effective control method.

16.
Biosens Bioelectron ; 81: 166-172, 2016 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-26945183

RESUMEN

We describe a novel infection-responsive coating for urinary catheters that provides a clear visual early warning of Proteus mirabilis infection and subsequent blockage. The crystalline biofilms of P. mirabilis can cause serious complications for patients undergoing long-term bladder catheterisation. Healthy urine is around pH 6, bacterial urease increases urine pH leading to the precipitation of calcium and magnesium deposits from the urine, resulting in dense crystalline biofilms on the catheter surface that blocks urine flow. The coating is a dual layered system in which the lower poly(vinyl alcohol) layer contains the self-quenching dye carboxyfluorescein. This is capped by an upper layer of the pH responsive polymer poly(methyl methacrylate-co-methacrylic acid) (Eudragit S100®). Elevation of urinary pH (>pH 7) dissolves the Eudragit layer, releasing the dye to provide a clear visual warning of impending blockage. Evaluation of prototype coatings using a clinically relevant in vitro bladder model system demonstrated that coatings provide up to 12h advanced warning of blockage, and are stable both in the absence of infection, and in the presence of species that do not cause catheter blockage. At the present time, there are no effective methods to control these infections or provide warning of impending catheter blockage.


Asunto(s)
Infecciones Relacionadas con Catéteres/diagnóstico , Materiales Biocompatibles Revestidos/química , Infecciones por Proteus/diagnóstico , Proteus mirabilis/aislamiento & purificación , Catéteres Urinarios/efectos adversos , Infecciones Urinarias/diagnóstico , Técnicas Biosensibles/métodos , Preparaciones de Acción Retardada/química , Fluoresceínas/administración & dosificación , Fluoresceínas/análisis , Colorantes Fluorescentes/administración & dosificación , Colorantes Fluorescentes/análisis , Humanos , Hidrogeles/química , Concentración de Iones de Hidrógeno , Ácidos Polimetacrílicos/química
17.
Lancet Infect Dis ; 16(2): 239-51, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26795692

RESUMEN

Antibiotics have saved countless lives and enabled the development of modern medicine over the past 70 years. However, it is clear that the success of antibiotics might only have been temporary and we now expect a long-term and perhaps never-ending challenge to find new therapies to combat antibiotic-resistant bacteria. A broader approach to address bacterial infection is needed. In this Review, we discuss alternatives to antibiotics, which we defined as non-compound approaches (products other than classic antibacterial agents) that target bacteria or any approaches that target the host. The most advanced approaches are antibodies, probiotics, and vaccines in phase 2 and phase 3 trials. This first wave of alternatives to antibiotics will probably best serve as adjunctive or preventive therapies, which suggests that conventional antibiotics are still needed. Funding of more than £1·5 billion is needed over 10 years to test and develop these alternatives to antibiotics. Investment needs to be partnered with translational expertise and targeted to support the validation of these approaches in phase 2 trials, which would be a catalyst for active engagement and investment by the pharmaceutical and biotechnology industry. Only a sustained, concerted, and coordinated international effort will provide the solutions needed for the future.


Asunto(s)
Antibacterianos/uso terapéutico , Bacterias/efectos de los fármacos , Infecciones Bacterianas/tratamiento farmacológico , Infecciones Bacterianas/prevención & control , Farmacorresistencia Bacteriana/efectos de los fármacos , Drogas en Investigación/uso terapéutico , Vacunas/uso terapéutico , Humanos
18.
Antimicrob Agents Chemother ; 60(3): 1530-6, 2015 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-26711744

RESUMEN

Proteus mirabilis forms dense crystalline biofilms on catheter surfaces that occlude urine flow, leading to serious clinical complications in long-term catheterized patients, but there are presently no truly effective approaches to control catheter blockage by this organism. This study evaluated the potential for bacteriophage therapy to control P. mirabilis infection and prevent catheter blockage. Representative in vitro models of the catheterized urinary tract, simulating a complete closed drainage system as used in clinical practice, were employed to evaluate the performance of phage therapy in preventing blockage. Models mimicking either an established infection or early colonization of the catheterized urinary tract were treated with a single dose of a 3-phage cocktail, and the impact on time taken for catheters to block, as well as levels of crystalline biofilm formation, was measured. In models of established infection, phage treatment significantly increased time taken for catheters to block (∼ 3-fold) compared to untreated controls. However, in models simulating early-stage infection, phage treatment eradicated P. mirabilis and prevented blockage entirely. Analysis of catheters from models of established infection 10 h after phage application demonstrated that phage significantly reduced crystalline biofilm formation but did not significantly reduce the level of planktonic cells in the residual bladder urine. Taken together, these results show that bacteriophage constitute a promising strategy for the prevention of catheter blockage but that methods to deliver phage in sufficient numbers and within a key therapeutic window (early infection) will also be important to the successful application of phage to this problem.


Asunto(s)
Bacteriófagos/patogenicidad , Terapia de Fagos/métodos , Infecciones por Proteus/terapia , Proteus mirabilis/virología , Cateterismo Urinario/efectos adversos , Catéteres Urinarios/microbiología , Bacteriófagos/aislamiento & purificación , Biopelículas/crecimiento & desarrollo , Catéteres de Permanencia/microbiología , Drenaje , Humanos , Microscopía Electrónica de Transmisión , Modelos Biológicos
19.
Sci Rep ; 5: 17324, 2015 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-26616662

RESUMEN

Accumulating evidence shows indigenous gut microbes can interact with the human host through modulation of serotonin (5-HT) signaling. Here we investigate the impact of the probiotic Escherichia coli Nissle 1917 (EcN) on 5-HT signalling in gut tissues. Ex-vivo mouse ileal tissue sections were treated with either EcN or the human gut commensal MG1655, and effects on levels of 5-HT, precursors, and metabolites, were evaluated using amperometry and high performance liquid chromatography with electrochemical detection (HPLC-EC). Exposure of tissue to EcN cells, but not MG1655 cells, was found to increase levels of extra-cellular 5-HT. These effects were not observed when tissues were treated with cell-free supernatant from bacterial cultures. In contrast, when supernatant recovered from untreated ileal tissue was pre-incubated with EcN, the derivative cell-free supernatant was able to elevate 5-HT overflow when used to treat fresh ileal tissue. Measurement of 5-HT precursors and metabolites indicated EcN also increases intracellular 5-HTP and reduces 5-HIAA. The former pointed to modulation of tryptophan hydroxylase-1 to enhance 5-HT synthesis, while the latter indicates an impact on clearance into enterocytes through SERT. Taken together, these findings show EcN is able to enhance 5-HT bioavailability in ileal tissues through interaction with compounds secreted from host tissues.


Asunto(s)
Escherichia coli/fisiología , Tracto Gastrointestinal/metabolismo , Tracto Gastrointestinal/microbiología , Serotonina/metabolismo , Animales , Disponibilidad Biológica , Espacio Extracelular/metabolismo , Ácidos Grasos/metabolismo , Masculino , Ratones , Modelos Biológicos , Serotonina/farmacocinética , Transmisión Sináptica
20.
Front Microbiol ; 6: 918, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26441861

RESUMEN

Here, we outline our current understanding of the human gut virome, in particular the phage component of this ecosystem, highlighting progress, and challenges in viral discovery in this arena. We reveal how developments in high-throughput sequencing technologies and associated data analysis methodologies are helping to illuminate this abundant 'biological dark matter.' Current evidence suggests that the human gut virome is a highly individual but temporally stable collective, dominated by phages exhibiting a temperate lifestyle. This viral community also appears to encode a surprisingly rich functional repertoire that confers a range of attributes to their bacterial hosts, ranging from bacterial virulence and pathogenesis to maintaining host-microbiome stability and community resilience. Despite the significant advances in our understanding of the gut virome in recent years, it is clear that we remain in a period of discovery and revelation, as new methods and technologies begin to provide deeper understanding of the inherent ecological characteristics of this viral ecosystem. As our understanding increases, the nature of the multi-partite interactions occurring between host and microbiome will become clearer, helping us to more rationally define the concepts and principles that will underpin approaches to using human gut virome components for medical or biotechnological applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...