Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 15 de 15
1.
Clin J Sport Med ; 34(1): 61-68, 2024 Jan 01.
Article En | MEDLINE | ID: mdl-37285595

OBJECTIVE: To investigate the link between dysfunction of the blood-brain barrier (BBB) and exposure to head impacts in concussed football athletes. DESIGN: This was a prospective, observational pilot study. SETTING: Canadian university football. PARTICIPANTS: The study population consisted of 60 university football players, aged 18 to 25. Athletes who sustained a clinically diagnosed concussion over the course of a single football season were invited to undergo an assessment of BBB leakage. INDEPENDENT VARIABLES: Head impacts detected using impact-sensing helmets were the measured variables. MAIN OUTCOME MEASURES: Clinical diagnosis of concussion and BBB leakage assessed using dynamic contrast-enhanced MRI (DCE-MRI) within 1 week of concussion were the outcome measures. RESULTS: Eight athletes were diagnosed with a concussion throughout the season. These athletes sustained a significantly higher number of head impacts than nonconcussed athletes. Athletes playing in the defensive back position were significantly more likely to sustain a concussion than remain concussion free. Five of the concussed athletes underwent an assessment of BBB leakage. Logistic regression analysis indicated that region-specific BBB leakage in these 5 athletes was best predicted by impacts sustained in all games and practices leading up to the concussion-as opposed to the last preconcussion impact or the impacts sustained during the game when concussion occurred. CONCLUSIONS: These preliminary findings raise the potential for the hypothesis that repeated exposure to head impacts may contribute to the development of BBB pathology. Further research is needed to validate this hypothesis and to test whether BBB pathology plays a role in the sequela of repeated head trauma.


Brain Concussion , Football , Humans , Blood-Brain Barrier/injuries , Brain Concussion/diagnosis , Canada , Football/injuries , Prospective Studies , Universities
2.
Sci Rep ; 13(1): 14421, 2023 Sep 02.
Article En | MEDLINE | ID: mdl-37660206

Direct access to internal temperature readings in lithium-ion batteries provides the opportunity to infer physical information to study the effects of increased heating, degradation, and thermal runaway. In this context, a method to insert temperature sensors into commercial 18650 cells to determine the short- and long-term effects through characterization testing is developed. Results show that sensor insertion only causes a decrease in capacity of 0.5-2.3%, and an increase in DC resistance of approximately 15 mΩ. The temperatures of the modified cells are approximately 0.5 °C higher than the control cells, the difference between the internal and external temperature readings of the modified cells is approximately 0.4 °C, and the modified cells exhibit the same temperature behavior and trend during cycling as the control cells. The cells are able to operate and collect data for 100-150 cycles before their capacities fade and resistances increase beyond what is observed in the control cells. The results of the testing show that cells modified with internal temperature sensors provide useful internal temperature data for cells that have experienced little or no cyclic aging.

4.
Nat Commun ; 13(1): 342, 2022 01 17.
Article En | MEDLINE | ID: mdl-35039521

Identifying differentially abundant microbes is a common goal of microbiome studies. Multiple methods are used interchangeably for this purpose in the literature. Yet, there are few large-scale studies systematically exploring the appropriateness of using these tools interchangeably, and the scale and significance of the differences between them. Here, we compare the performance of 14 differential abundance testing methods on 38 16S rRNA gene datasets with two sample groups. We test for differences in amplicon sequence variants and operational taxonomic units (ASVs) between these groups. Our findings confirm that these tools identified drastically different numbers and sets of significant ASVs, and that results depend on data pre-processing. For many tools the number of features identified correlate with aspects of the data, such as sample size, sequencing depth, and effect size of community differences. ALDEx2 and ANCOM-II produce the most consistent results across studies and agree best with the intersect of results from different approaches. Nevertheless, we recommend that researchers should use a consensus approach based on multiple differential abundance methods to help ensure robust biological interpretations.


Databases, Genetic , Microbiota/genetics , Cluster Analysis , Computer Simulation , Diarrhea/genetics , Genetic Variation , Humans , Phylogeny , Sequence Analysis, DNA
5.
Brain ; 145(6): 2049-2063, 2022 06 30.
Article En | MEDLINE | ID: mdl-34927674

The mechanisms underlying the complications of mild traumatic brain injury, including post-concussion syndrome, post-impact catastrophic death, and delayed neurodegeneration remain poorly understood. This limited pathophysiological understanding has hindered the development of diagnostic and prognostic biomarkers and has prevented the advancement of treatments for the sequelae of mild traumatic brain injury. We aimed to characterize the early electrophysiological and neurovascular alterations following repetitive mild traumatic brain injury and sought to identify new targets for the diagnosis and treatment of individuals at risk of severe post-impact complications. We combined behavioural, electrophysiological, molecular, and neuroimaging techniques in a rodent model of repetitive mild traumatic brain injury. In humans, we used dynamic contrast-enhanced MRI to quantify blood-brain barrier dysfunction after exposure to sport-related concussive mild traumatic brain injury. Rats could clearly be classified based on their susceptibility to neurological complications, including life-threatening outcomes, following repetitive injury. Susceptible animals showed greater neurological complications and had higher levels of blood-brain barrier dysfunction, transforming growth factor ß (TGFß) signalling, and neuroinflammation compared to resilient animals. Cortical spreading depolarizations were the most common electrophysiological events immediately following mild traumatic brain injury and were associated with longer recovery from impact. Triggering cortical spreading depolarizations in mild traumatic brain injured rats (but not in controls) induced blood-brain barrier dysfunction. Treatment with a selective TGFß receptor inhibitor prevented blood-brain barrier opening and reduced injury complications. Consistent with the rodent model, blood-brain barrier dysfunction was found in a subset of human athletes following concussive mild traumatic brain injury. We provide evidence that cortical spreading depolarization, blood-brain barrier dysfunction, and pro-inflammatory TGFß signalling are associated with severe, potentially life-threatening outcomes following repetitive mild traumatic brain injury. Diagnostic-coupled targeting of TGFß signalling may be a novel strategy in treating mild traumatic brain injury.


Brain Concussion , Animals , Blood-Brain Barrier/metabolism , Brain/metabolism , Brain Concussion/etiology , Humans , Neuroimaging , Rats , Transforming Growth Factor beta/metabolism
6.
Inflamm Bowel Dis ; 26(7): 1026-1037, 2020 06 18.
Article En | MEDLINE | ID: mdl-31961432

BACKGROUND: The gut microbiome is extensively involved in induction of remission in pediatric Crohn's disease (CD) patients by exclusive enteral nutrition (EEN). In this follow-up study of pediatric CD patients undergoing treatment with EEN, we employ machine learning models trained on baseline gut microbiome data to distinguish patients who achieved and sustained remission (SR) from those who did not achieve remission nor relapse (non-SR) by 24 weeks. METHODS: A total of 139 fecal samples were obtained from 22 patients (8-15 years of age) for up to 96 weeks. Gut microbiome taxonomy was assessed by 16S rRNA gene sequencing, and functional capacity was assessed by metagenomic sequencing. We used standard metrics of diversity and taxonomy to quantify differences between SR and non-SR patients and to associate gut microbial shifts with fecal calprotectin (FCP), and disease severity as defined by weighted Pediatric Crohn's Disease Activity Index. We used microbial data sets in addition to clinical metadata in random forests (RFs) models to classify treatment response and predict FCP levels. RESULTS: Microbial diversity did not change after EEN, but species richness was lower in low-FCP samples (<250 µg/g). An RF model using microbial abundances, species richness, and Paris disease classification was the best at classifying treatment response (area under the curve [AUC] = 0.9). KEGG Pathways also significantly classified treatment response with the addition of the same clinical data (AUC = 0.8). Top features of the RF model are consistent with previously identified IBD taxa, such as Ruminococcaceae and Ruminococcus gnavus. CONCLUSIONS: Our machine learning approach is able to distinguish SR and non-SR samples using baseline microbiome and clinical data.


Bacteria/classification , Bacterial Typing Techniques/statistics & numerical data , Crohn Disease/microbiology , Enteral Nutrition , Gastrointestinal Microbiome/genetics , Adolescent , Bacteria/genetics , Bacterial Typing Techniques/methods , Child , Crohn Disease/therapy , Feces/chemistry , Feces/microbiology , Female , Follow-Up Studies , Humans , Leukocyte L1 Antigen Complex/analysis , Machine Learning , Male , Metagenome , Predictive Value of Tests , Prospective Studies , RNA, Ribosomal, 16S , Recurrence , Remission Induction , Severity of Illness Index
7.
J Biomed Mater Res B Appl Biomater ; 108(5): 2344-2353, 2020 07.
Article En | MEDLINE | ID: mdl-31994825

Herein, we describe the covalent attachment of resveratrol, a naturally occurring antioxidant, to the surface of stainless-steel as a model for designing a novel bare-metal stent to treat coronary artery disease. Resveratrol has been shown to reduce oxidative stress in dysfunctional endothelial cells, and stimulate arterial healing. Resveratrol treatments, however, are limited by low water solubility, such that a localized delivery to the site of arterial narrowing via a coated stent presents a promising strategy for improving stent outcomes. Our attachment strategy utilizes zirconium vapor deposition to lay down a thin layer of zirconium oxide with labile hydrocarbon groups at the surface. Resveratrol can displace these hydrocarbons in aprotic solvent to afford a covalently attached layer of resveratrol. We evaluated the release of resveratrol under a range of pH levels, including physiological conditions (pH = 7.4 and 37 °C). Furthermore, we established that endothelial cells grown on a resveratrol-bound surface release elevated nitric oxide levels compared to controls, a key endothelial signaling molecule responsible for arterial health. These results are promising toward the development of a resveratrol-coated bare-metal stent to improve patient outcomes.


Coated Materials, Biocompatible/chemistry , Coronary Artery Disease/therapy , Delayed-Action Preparations/chemistry , Resveratrol/chemistry , Stainless Steel/chemistry , Cell Adhesion , Cell Proliferation , Drug Liberation , Endothelial Cells , Humans , Nitric Oxide/metabolism , Oxidative Stress , Stents , Surface Properties , Treatment Outcome , Zirconium/chemistry
8.
Microbiome ; 6(1): 13, 2018 01 15.
Article En | MEDLINE | ID: mdl-29335008

BACKGROUND: Crohn's disease (CD) has an unclear etiology, but there is growing evidence of a direct link with a dysbiotic microbiome. Many gut microbes have previously been associated with CD, but these have mainly been confounded with patients' ongoing treatments. Additionally, most analyses of CD patients' microbiomes have focused on microbes in stool samples, which yield different insights than profiling biopsy samples. RESULTS: We sequenced the 16S rRNA gene (16S) and carried out shotgun metagenomics (MGS) from the intestinal biopsies of 20 treatment-naïve CD and 20 control pediatric patients. We identified the abundances of microbial taxa and inferred functional categories within each dataset. We also identified known human genetic variants from the MGS data. We then used a machine learning approach to determine the classification accuracy when these datasets, collapsed to different hierarchical groupings, were used independently to classify patients by disease state and by CD patients' response to treatment. We found that 16S-identified microbes could classify patients with higher accuracy in both cases. Based on follow-ups with these patients, we identified which microbes and functions were best for predicting disease state and response to treatment, including several previously identified markers. By combining the top features from all significant models into a single model, we could compare the relative importance of these predictive features. We found that 16S-identified microbes are the best predictors of CD state whereas MGS-identified markers perform best for classifying treatment response. CONCLUSIONS: We demonstrate for the first time that useful predictors of CD treatment response can be produced from shotgun MGS sequencing of biopsy samples despite the complications related to large proportions of host DNA. The top predictive features that we identified in this study could be useful for building an improved classifier for CD and treatment response based on sufferers' microbiome in the future. The BISCUIT project is funded by a Clinical Academic Fellowship from the Chief Scientist Office (Scotland)-CAF/08/01.


Crohn Disease/genetics , Dysbiosis/complications , Genetic Variation , Metagenomics/methods , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA/methods , Adolescent , Child , Child, Preschool , Crohn Disease/microbiology , DNA, Bacterial/genetics , DNA, Ribosomal/genetics , Feces/microbiology , Female , Genetic Predisposition to Disease , Humans , Machine Learning , Male
9.
J Biomed Mater Res B Appl Biomater ; 104(8): 1610-1621, 2016 11.
Article En | MEDLINE | ID: mdl-26316151

Chronic deep venous insufficiency is a debilitating disease with limited therapeutic interventions. A bioprosthetic venous valve could not only replace a diseased valve, but has the potential to fully integrate into the patient with a minimally invasive procedure. Previous work with valves constructed from small intestinal submucosa (SIS) showed improvements in patients' symptoms in clinical studies; however, substantial thickening of the implanted valve leaflets also occurred. As endothelial cells are key regulators of vascular homeostasis, their presence on the SIS valves may reduce the observed thickening. This work tested an off-the-shelf approach to capture circulating endothelial cells in vivo using biotinylated antikinase insert domain receptor antibodies in a suspended leaflet ovine model. The antibodies on SIS were oriented to promote cell capture and showed positive binding to endothelial cells in vitro; however, no differences were observed in leaflet thickness in vivo between antibody-modified and unmodified SIS. In an alternative approach, valves were pre-seeded with autologous endothelial cells and tested in vivo. Nearly all the implanted pre-seeded valves were patent and functioning; however, no statistical difference was observed in valve thickness with cell pre-seeding. Additional cell capture schemes or surface modifications should be examined to find an optimal method for encouraging SIS valve endothelialization to improve long-term valve function in vivo. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1610-1621, 2016.


Bioprosthesis , Endothelium, Vascular/metabolism , Venous Insufficiency/metabolism , Venous Insufficiency/surgery , Venous Valves , Animals , Chronic Disease , Endothelium, Vascular/pathology , Female , Sheep , Venous Insufficiency/pathology
10.
Cell Mol Bioeng ; 7(1): 1-14, 2014 Mar.
Article En | MEDLINE | ID: mdl-24563678

The dynamics of the cellular and molecular constituents of the circulatory system are regulated by the biophysical properties of the heart, vasculature and blood cells and proteins. In this review, we discuss measurement techniques that have been developed to characterize the physical and mechanical parameters of the circulatory system across length scales ranging from the tissue scale (centimeter) to the molecular scale (nanometer) and time scales of years to milliseconds. We compare the utility of measurement techniques as a function of spatial resolution and penetration depth from both a diagnostic and research perspective. Together, this review provides an overview of the utility of measurement science techniques to study the spatial systems of the circulatory system in health and disease.

11.
J Mater Chem B ; 1(29): 3553-3561, 2013 Aug 07.
Article En | MEDLINE | ID: mdl-23936630

Templating of cell spreading and proliferation is described that yields confluent layers of cells aligned across an entire two-dimensional surface. The template is a reactive, two-component interface that is synthesized in three steps in nanometer thick, micron-scaled patterns on silicon and on several biomaterial polymers. In this method, a volatile zirconium alkoxide complex is first deposited at reduced pressure onto a surface pattern that is prepared by photolithography; the substrate is then heated to thermolyze the organic ligands to form surface-bound zirconium oxide patterns. The thickness of this oxide layer ranges from 10 to 70 nanometers, which is controlled by alkoxide complex deposition time. The oxide layer is treated with 1,4-butanediphosphonic acid to give a monolayer pattern whose composition and spatial conformity to the photolithographic mask are determined spectroscopically. NIH 3T3 fibroblasts and human bone marrow-derived mesenchymal stem cells attach and spread in alignment with the pattern without constraint by physical means or by arrays of cytophilic and cytophobic molecules. Cell alignment with the pattern is maintained as cells grow to form a confluent monolayer across the entire substrate surface.

12.
J Biomed Mater Res A ; 100(8): 2168-75, 2012 Aug.
Article En | MEDLINE | ID: mdl-22615182

The lack of integration between implants and articular cartilage is an unsolved problem that negatively impacts the development of treatments for focal cartilage defects. Many approaches attempt to increase the number of matrix-producing cells that can migrate to the interface, which may help to reinforce the boundary over time but does not address the problems associated with an initially unstable interface. The objective of this study was to develop a bioadhesive implant to create an immediate bond with the extracellular matrix components of articular cartilage. We hypothesized that implant-bound collagen adhesion protein (CNA) would increase the interfacial strength between a poly(vinly alcohol) implant and an articular cartilage immediately after implantation, without preventing cell migration into the implant. By way of a series of in vitro immunohistochemical and mechanical experiments, we demonstrated that (i) free CNA can bind to articular cartilage, (ii) implant-bound CNA can bind to collagen type II and (iii) implants functionalized with CNA result in a fourfold increase in interfacial strength with cartilage relative to untreated implants at day zero. Of note, the interfacial strength significantly decreased after 21 days in culture, which may be an indication that the protein itself has lost its effectiveness. Our data suggest that functionalizing scaffolds with CNA may be a viable approach toward creating an initially stable interface between scaffolds and articular cartilage. Further efforts are required to ensure long-term interface stability.


Adhesins, Bacterial/pharmacology , Cartilage, Articular/drug effects , Cartilage, Articular/physiology , Prostheses and Implants , Adhesiveness/drug effects , Animals , Biocompatible Materials/pharmacology , Cattle , Collagen/metabolism , Fluorescein-5-isothiocyanate/metabolism , Glycosaminoglycans/metabolism , Materials Testing , Microscopy, Fluorescence , Protein Binding/drug effects , Staining and Labeling , Tissue Scaffolds
13.
J Vasc Interv Radiol ; 23(5): 697-703, 2012 May.
Article En | MEDLINE | ID: mdl-22410542

PURPOSE: Percutaneous transcatheter implantation of porcine small intestinal submucosa (SIS) bioprosthetic valves has been reported as a treatment for chronic deep venous insufficiency (CDVI). Endothelial progenitor outgrowth cells (EOCs), isolated from whole ovine blood, were evaluated as a source of in vitro autologous seeding for SIS endothelialization. Retention of the EOC monolayer was evaluated to test the feasibility of delivering an endothelialized SIS valve. MATERIALS AND METHODS: Twenty bioprosthetic venous valves were constructed from SIS sutured onto collapsible square stent frames and were seeded with ovine EOCs in vitro. Retention of the endothelial monolayer through valve loading and delivery (three valves), in vitro flow (three valves), and ex vivo flow (four valves) was evaluated with immunofluorescent staining and histologic analysis compared with paired unmanipulated control valves. In the ex vivo shunt loop, venous blood was pulled from an implanted dialysis catheter, through the valve, and returned to the sheep. RESULTS: Immunofluorescent staining of EOCs on the valves after in vitro seeding revealed a confluent monolayer (95.6% ± 2.3% confluent) on each side of the valve. When examined by immunofluorescent staining, the endothelial monolayer remained intact after loading and delivery (97.1% ± 1.7%) and when subjected to flow in the in vitro loop (96.0% ± 3.0%). Histologic analysis of the valves subjected to the ex vivo shunt loop revealed retention of the endothelial monolayer. CONCLUSIONS: Endothelial monolayers seeded on SIS were retained under loading and delivery, in vitro flow, and ex vivo flow. EOCs are a promising cell source for autologous endothelialization of bioprosthetic valves for the treatment of CDVI.


Bioprosthesis , Blood Vessel Prosthesis Implantation/instrumentation , Blood Vessel Prosthesis , Endothelial Cells/transplantation , Intestine, Small/transplantation , Stem Cell Transplantation , Tissue Scaffolds , Venous Insufficiency/surgery , Animals , Cells, Cultured , Chronic Disease , Feasibility Studies , Female , Fluorescent Antibody Technique , Humans , Materials Testing , Microscopy, Fluorescence , Prosthesis Design , Sheep , Swine , Transplantation, Autologous
14.
ACS Appl Mater Interfaces ; 2(8): 2185-8, 2010 Aug.
Article En | MEDLINE | ID: mdl-20690771

A novel interface was prepared on glass slides that stabilizes several cast polymers against delamination under conditions necessary for the study of cell surface interactions. This interface was synthesized by deposition of zirconium tetra(tert-butoxide) from the vapor phase onto the glass followed by mild thermolysis, which gives a surface-bound zirconium oxide coating. This oxide coating improved attachment of polymer coatings cast from formic acid or methylene chloride. Nylon, polyurethane, and polyhydroxybutyrate/polyhydroxyvalerate coatings were stable against delamination from the oxide-coated glass following sonication in ethanol for more than 30 min or immersion in water at pH 8 for at least 48 h.


Equipment and Supplies , Glass , Nanotechnology/methods , Polymers/chemistry , Oxides/chemistry , Zirconium/chemistry
...