Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Med Chem Lett ; 15(7): 1136-1142, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39015269

RESUMEN

Although teixobactin is a promising antibiotic drug candidate against Gram-positive bacteria, it aggregates to form gels that may limit intravenous administration. We previously reported O-acyl isopeptide prodrugs of teixobactin analogues that address the problem of gel formation while retaining antibiotic activity. We termed these compounds isobactins. In the current Letter, we present nine new isobactin analogues that exhibit a reduced propensity to form gels in aqueous conditions while maintaining potent antibiotic activity against MRSA, VRE, and other Gram-positive bacteria. These isobactin analogues contain commercially available amino acid residues at position 10, replacing the synthetically challenging l-allo-enduracididine residue that is present in teixobactin. The isobactins undergo clean conversion to their corresponding teixobactin analogues at physiological pH and exhibit little to no hemolytic activity or cytotoxicity. Because isobactin analogues exhibit enhanced solubility, delayed gel formation, and are more synthetically accessible, it is anticipated that isobactin prodrug analogues may be superior drug candidates to teixobactin.

2.
Chem Sci ; 15(1): 285-297, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38131075

RESUMEN

ß-Hairpins formed by the ß-amyloid peptide Aß are building blocks of Aß oligomers. Three different alignments of ß-hairpins have been observed in the structures of Aß oligomers or fibrils. Differences in ß-hairpin alignment likely contribute to the heterogeneity of Aß oligomers and thus impede their study at high-resolution. Here, we designed, synthesized, and studied a series of ß-hairpin peptides derived from Aß12-40 in one of these three alignments and investigated their solution-phase assembly and folding. These assays reveal the formation of tetramers and octamers that are stabilized by intermolecular hydrogen bonding interactions between Aß residues 12-14 and 38-40 as part of an extended ß-hairpin conformation. X-ray crystallographic studies of one peptide from this series reveal the formation of ß-barrel-like tetramers and octamers that are stabilized by edge-to-edge hydrogen bonding and hydrophobic packing. Dye-leakage and caspase 3/7 activation assays using tetramer and octamer forming peptides from this series reveal membrane-damaging and apoptotic properties. A molecular dynamics simulation of the ß-barrel-like tetramer embedded in a lipid bilayer shows membrane disruption and water permeation. The tetramers and octamers described herein provide additional models of how Aß may assemble into oligomers and supports the hypothesis that ß-hairpin alignment and topology may contribute directly to oligomer heterogeneity.

3.
J Org Chem ; 88(4): 2214-2220, 2023 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-36655882

RESUMEN

This paper describes the synthesis and stereochemical determination of Novo29 (clovibactin), a new peptide antibiotic that is related to teixobactin and is active against Gram-positive bacteria. Novo29 is an eight-residue depsipeptide that contains the noncanonical amino acid hydroxyasparagine of hitherto undetermined stereochemistry in a macrolactone ring. The amino acid building blocks Fmoc-(2R,3R)-hydroxyasparagine-OH and Fmoc-(2R,3S)-hydroxyasparagine-OH were synthesized from (R,R)- and (S,S)-diethyl tartrate. Novo29 and epi-Novo29 were then prepared by solid-phase peptide synthesis using these building blocks. Correlation with an authentic sample of Novo29 through 1H NMR spectroscopy, LC-MS, and in vitro antibiotic activity established that Novo29 contains (2R,3R)-hydroxyasparagine. X-ray crystallography reveals that epi-Novo29 adopts an amphiphilic conformation, with a hydrophobic surface and a hydrophilic surface. Four sets of epi-Novo29 molecules pack in the crystal lattice to form a hydrophobic core. The macrolactone ring adopts a conformation in which the main-chain amide NH groups converge to create a cavity, which binds ordered water and acetate anion. The amphiphilic conformation of epi-Novo29 is reminiscent of the amphiphilic conformation adopted by the related antibiotic teixobactin and its derivatives, which contains a hydrophobic surface that interacts with the lipids of the bacterial cell membrane and a hydrophilic surface that interacts with the aqueous environment. Molecular modeling suggests that Novo29 can adopt an amphiphilic conformation similar to teixobactin, suggesting that Novo29 may interact with bacteria in a similar fashion to teixobactin.


Asunto(s)
Aminoácidos , Antibacterianos , Antibacterianos/farmacología , Antibacterianos/química , Modelos Moleculares , Conformación Molecular , Aminoácidos/química , Espectroscopía de Resonancia Magnética
4.
Chem Sci ; 13(44): 13110-13116, 2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36425497

RESUMEN

The antibiotic teixobactin is a promising drug candidate against drug-resistant pathogens, such as MRSA and VRE, but forms insoluble gels that may limit intravenous administration. O-Acyl isopeptide prodrug analogues of teixobactin circumvent the problem of gel formation while retaining antibiotic activity. The teixobactin prodrug analogues contain ester linkages between Ile6 and Ser7, Ile2 and Ser3, or between both Ile6 and Ser7 and Ile2 and Ser3. Upon exposure to physiological pH, the prodrug analogues undergo clean conversion to the corresponding amides, with half-lives between 13 and 115 min. Prodrug analogues containing lysine, arginine, or leucine at position 10 exhibit good antibiotic activity against a variety of Gram-positive bacteria while exhibiting little or no cytotoxicity or hemolytic activity. Because O-acyl isopeptide prodrug analogues of teixobactin exhibit clean conversion to the corresponding teixobactin analogues with reduced propensity to form gels, it is anticipated that teixobactin prodrugs will be superior to teixobactin as drug candidates.

5.
Nature ; 608(7922): 390-396, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35922513

RESUMEN

Antibiotics that use novel mechanisms are needed to combat antimicrobial resistance1-3. Teixobactin4 represents a new class of antibiotics with a unique chemical scaffold and lack of detectable resistance. Teixobactin targets lipid II, a precursor of peptidoglycan5. Here we unravel the mechanism of teixobactin at the atomic level using a combination of solid-state NMR, microscopy, in vivo assays and molecular dynamics simulations. The unique enduracididine C-terminal headgroup of teixobactin specifically binds to the pyrophosphate-sugar moiety of lipid II, whereas the N terminus coordinates the pyrophosphate of another lipid II molecule. This configuration favours the formation of a ß-sheet of teixobactins bound to the target, creating a supramolecular fibrillar structure. Specific binding to the conserved pyrophosphate-sugar moiety accounts for the lack of resistance to teixobactin4. The supramolecular structure compromises membrane integrity. Atomic force microscopy and molecular dynamics simulations show that the supramolecular structure displaces phospholipids, thinning the membrane. The long hydrophobic tails of lipid II concentrated within the supramolecular structure apparently contribute to membrane disruption. Teixobactin hijacks lipid II to help destroy the membrane. Known membrane-acting antibiotics also damage human cells, producing undesirable side effects. Teixobactin damages only membranes that contain lipid II, which is absent in eukaryotes, elegantly resolving the toxicity problem. The two-pronged action against cell wall synthesis and cytoplasmic membrane produces a highly effective compound targeting the bacterial cell envelope. Structural knowledge of the mechanism of teixobactin will enable the rational design of improved drug candidates.


Asunto(s)
Antibacterianos , Bacterias , Membrana Celular , Depsipéptidos , Viabilidad Microbiana , Antibacterianos/química , Antibacterianos/farmacología , Bacterias/citología , Bacterias/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Pared Celular/efectos de los fármacos , Pared Celular/metabolismo , Depsipéptidos/química , Depsipéptidos/farmacología , Difosfatos/química , Farmacorresistencia Bacteriana/efectos de los fármacos , Humanos , Lípidos/química , Pruebas de Sensibilidad Microbiana , Viabilidad Microbiana/efectos de los fármacos , Microscopía de Fuerza Atómica , Simulación de Dinámica Molecular , Resonancia Magnética Nuclear Biomolecular , Estructura Secundaria de Proteína , Pirrolidinas/química , Azúcares/química
6.
Chem Sci ; 13(26): 7747-7754, 2022 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-35865902

RESUMEN

Teixobactin has been the source of intensive study and interest as a promising antibiotic, because of its excellent activity against drug-resistant Gram-positive pathogens and its novel but not yet fully understood mechanism of action that precludes drug resistance. Recent studies have demonstrated that the mode of action of teixobactin is more complicated than initially thought, with supramolecular assembly of the antibiotic appearing to play a critical role in the binding process. Further studies of the interactions of teixobactin with bacteria and its molecular targets offer the promise of providing deeper insights into its novel mechanism of action and guiding the design of additional drug candidates and analogues. The current study reports the preparation and study of teixobactin analogues bearing a variety of fluorophores. Structured illumination microscopy of the fluorescent teixobactin analogues with B. subtilis enables super-resolution visualization of the interaction of teixobactin with bacterial cell walls and permits the observation of aggregated clusters of the antibiotic on the bacteria. Förster resonance energy transfer (FRET) microscopy further elucidates the supramolecular assembly by showing that fluorescent teixobactin molecules co-localize within a few nanometers on B. subtilis. Fluorescence microscopy over time with a fluorescent teixobactin analogue and propidium iodide in B. subtilis reveals a correlation between cell death and binding of the antibiotic to cellular targets, followed by lysis of cells. Collectively, these studies provide new insights into the binding of teixobactin to Gram-positive bacteria, its supramolecular mechanism of action, and the lysis of bacteria that follows.

7.
Methods Enzymol ; 665: 233-258, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35379436

RESUMEN

Teixobactin is a promising new antibiotic that kills a spectrum of Gram-positive pathogens that are considered to be urgent threats by the CDC and the WHO. Better understanding of the novel mechanism of action of teixobactin may assist in developing new antibiotics and furthering our understanding of antibiotic resistance. This chapter describes the synthesis and application of fluorescent teixobactin analogs in fluorescence microscopy to study the mode of action of teixobactin. The first part of this chapter describes the synthesis and purification of fluorescent teixobactin analogs using two synthetic approaches. The second part of this chapter describes the application of the fluorescent teixobactin analogs to visualize their interactions with molecular targets in B. subtilis using fluorescence microscopy. The methods described herein provide synthetic access to chemical probes that may help further the understanding of antibiotic resistance.


Asunto(s)
Depsipéptidos , Antibacterianos/farmacología , Depsipéptidos/química , Depsipéptidos/farmacología , Microscopía Fluorescente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...