Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 1 de 1
1.
J Immunol ; 207(9): 2245-2254, 2021 11 01.
Article En | MEDLINE | ID: mdl-34561227

Targeting interactions between α4ß7 integrin and endothelial adhesion molecule MAdCAM-1 to inhibit lymphocyte migration to the gastrointestinal tract is an effective therapy in inflammatory bowel disease (IBD). Following lymphocyte entry into the mucosa, a subset of these cells expresses αEß7 integrin, which is expressed on proinflammatory lymphocytes, to increase cell retention. The factors governing lymphocyte migration into the intestinal mucosa and αE integrin expression in healthy subjects and IBD patients remain incompletely understood. We evaluated changes in factors involved in lymphocyte migration and differentiation within tissues. Both ileal and colonic tissue from active IBD patients showed upregulation of ICAM-1, VCAM-1, and MAdCAM-1 at the gene and protein levels compared with healthy subjects and/or inactive IBD patients. ß1 and ß7 integrin expression on circulating lymphocytes was similar across groups. TGF-ß1 treatment induced expression of αE on both ß7+ and ß7- T cells, suggesting that cells entering the mucosa independently of MAdCAM-1/α4ß7 can become αEß7+ ITGAE gene polymorphisms did not alter protein induction following TGF-ß1 stimulation. Increased phospho-SMAD3, which is directly downstream of TGF-ß, and increased TGF-ß-responsive gene expression were observed in the colonic mucosa of IBD patients. Finally, in vitro stimulation experiments showed that baseline ß7 expression had little effect on cytokine, chemokine, transcription factor, and effector molecule gene expression in αE+ and αE- T cells. These findings suggest cell migration to the gut mucosa may be altered in IBD and α4ß7-, and α4ß7+ T cells may upregulate αEß7 in response to TGF-ß once within the gut mucosa.


Antigens, CD/metabolism , Inflammatory Bowel Diseases/immunology , Integrin alpha Chains/metabolism , Integrin beta Chains/metabolism , Intestinal Mucosa/immunology , Receptors, Lymphocyte Homing/metabolism , T-Lymphocytes/immunology , Adult , Aged , Cell Movement , Female , Humans , Integrin beta Chains/genetics , Male , Middle Aged , Signal Transduction , Smad3 Protein/metabolism , Transforming Growth Factor beta1/metabolism
...