Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
Parasit Vectors ; 17(1): 29, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38254168

RESUMEN

BACKGROUND: Ticks are an important driver of veterinary health care, causing irritation and sometimes infection to their hosts. We explored epidemiological and geo-referenced data from > 7 million electronic health records (EHRs) from cats and dogs collected by the Small Animal Veterinary Surveillance Network (SAVSNET) in Great Britain (GB) between 2014 and 2021 to assess the factors affecting tick attachment in an individual and at a spatiotemporal level. METHODS: EHRs in which ticks were mentioned were identified by text mining; domain experts confirmed those with ticks on the animal. Tick presence/absence records were overlaid with a spatiotemporal series of climate, environment, anthropogenic and host distribution factors to produce a spatiotemporal regression matrix. An ensemble machine learning spatiotemporal model was used to fine-tune hyperparameters for Random Forest, Gradient-boosted Trees and Generalized Linear Model regression algorithms, which were then used to produce a final ensemble meta-learner to predict the probability of tick attachment across GB at a monthly interval and averaged long-term through 2014-2021 at a spatial resolution of 1 km. Individual host factors associated with tick attachment were also assessed by conditional logistic regression on a matched case-control dataset. RESULTS: In total, 11,741 consultations were identified in which a tick was recorded. The frequency of tick records was low (0.16% EHRs), suggesting an underestimation of risk. That said, increased odds for tick attachment in cats and dogs were associated with younger adult ages, longer coat length, crossbreeds and unclassified breeds. In cats, males and entire animals had significantly increased odds of recorded tick attachment. The key variables controlling the spatiotemporal risk for tick attachment were climatic (precipitation and temperature) and vegetation type (Enhanced Vegetation Index). Suitable areas for tick attachment were predicted across GB, especially in forests and grassland areas, mainly during summer, particularly in June. CONCLUSIONS: Our results can inform targeted health messages to owners and veterinary practitioners, identifying those animals, seasons and areas of higher risk for tick attachment and allowing for more tailored prophylaxis to reduce tick burden, inappropriate parasiticide treatment and potentially TBDs in companion animals and humans. Sentinel networks like SAVSNET represent a novel complementary data source to improve our understanding of tick attachment risk for companion animals and as a proxy of risk to humans.


Asunto(s)
Algoritmos , Mascotas , Adulto , Humanos , Masculino , Gatos , Animales , Perros , Femenino , Reino Unido/epidemiología , Factores de Riesgo , Análisis Espacio-Temporal
2.
Nat Genet ; 55(11): 1892-1900, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37884686

RESUMEN

Somatic mutations are hypothesized to play a role in many non-neoplastic diseases. We performed whole-exome sequencing of 1,182 microbiopsies dissected from lesional and nonlesional epidermis from 111 patients with psoriasis to search for evidence that somatic mutations in keratinocytes may influence the disease process. Lesional skin remained highly polyclonal, showing no evidence of large-scale spread of clones carrying potentially pathogenic mutations. The mutation rate of keratinocytes was similarly only modestly affected by the disease. We found evidence of positive selection in previously reported driver genes NOTCH1, NOTCH2, TP53, FAT1 and PPM1D and also identified mutations in four genes (GXYLT1, CHEK2, ZFP36L2 and EEF1A1) that we hypothesize are selected for in squamous epithelium irrespective of disease status. Finally, we describe a mutational signature of psoralens-a class of chemicals previously found in some sunscreens and which are used as part of PUVA (psoralens and ultraviolet-A) photochemotherapy treatment for psoriasis.


Asunto(s)
Furocumarinas , Psoriasis , Humanos , Ficusina/uso terapéutico , Terapia PUVA , Psoriasis/tratamiento farmacológico , Psoriasis/genética , Psoriasis/patología , Furocumarinas/uso terapéutico , Mutación
3.
Nat Commun ; 14(1): 5826, 2023 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-37749094

RESUMEN

Reninomas are exceedingly rare renin-secreting kidney tumours that derive from juxtaglomerular cells, specialised smooth muscle cells that reside at the vascular inlet of glomeruli. They are the central component of the juxtaglomerular apparatus which controls systemic blood pressure through the secretion of renin. We assess somatic changes in reninoma and find structural variants that generate canonical activating rearrangements of, NOTCH1 whilst removing its negative regulator, NRARP. Accordingly, in single reninoma nuclei we observe excessive renin and NOTCH1 signalling mRNAs, with a concomitant non-excess of NRARP expression. Re-analysis of previously published reninoma bulk transcriptomes further corroborates our observation of dysregulated Notch pathway signalling in reninoma. Our findings reveal NOTCH1 rearrangements in reninoma, therapeutically targetable through existing NOTCH1 inhibitors, and indicate that unscheduled Notch signalling may be a disease-defining feature of reninoma.


Asunto(s)
Neoplasias Renales , Renina , Humanos , Renina/metabolismo , Neoplasias Renales/metabolismo , Aparato Yuxtaglomerular/metabolismo , Aparato Yuxtaglomerular/patología , Glomérulos Renales/patología , Transducción de Señal/genética , Receptor Notch1/genética
5.
Nat Genet ; 55(9): 1440-1447, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37537257

RESUMEN

The incidence of keratinocyte cancer (basal cell and squamous cell carcinomas of the skin) is 17-fold lower in Singapore than the UK1-3, despite Singapore receiving 2-3 times more ultraviolet (UV) radiation4,5. Aging skin contains somatic mutant clones from which such cancers develop6,7. We hypothesized that differences in keratinocyte cancer incidence may be reflected in the normal skin mutational landscape. Here we show that, compared to Singapore, aging facial skin from populations in the UK has a fourfold greater mutational burden, a predominant UV mutational signature, increased copy number aberrations and increased mutant TP53 selection. These features are shared by keratinocyte cancers from high-incidence and low-incidence populations8-13. In Singaporean skin, most mutations result from cell-intrinsic processes; mutant NOTCH1 and NOTCH2 are more strongly selected than in the UK. Aging skin in a high-incidence country has multiple features convergent with cancer that are not found in a low-risk country. These differences may reflect germline variation in UV-protective genes.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias Cutáneas , Humanos , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología , Carcinoma de Células Escamosas/genética , Queratinocitos , Rayos Ultravioleta/efectos adversos , Mutación
6.
Commun Biol ; 6(1): 753, 2023 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-37468606

RESUMEN

Highly sensitive DNA sequencing techniques have allowed the discovery of large numbers of somatic mutations in normal tissues. Some mutations confer a competitive advantage over wild-type cells, generating expanding clones that spread through the tissue. Competition between mutant clones leads to selection. This process can be considered a large scale, in vivo screen for mutations increasing cell fitness. It follows that somatic missense mutations may offer new insights into the relationship between protein structure, function and cell fitness. We present a flexible statistical method for exploring the selection of structural features in data sets of somatic mutants. We show how this approach can evidence selection of specific structural features in key drivers in aged tissues. Finally, we show how drivers may be classified as fitness-enhancing and fitness-suppressing through different patterns of mutation enrichment. This method offers a route to understanding the mechanism of protein function through in vivo mutant selection.


Asunto(s)
Evolución Clonal , Proteínas , Mutación , Análisis de Secuencia de ADN
7.
Nat Genet ; 55(2): 232-245, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36658434

RESUMEN

NOTCH1 mutant clones occupy the majority of normal human esophagus by middle age but are comparatively rare in esophageal cancers, suggesting NOTCH1 mutations drive clonal expansion but impede carcinogenesis. Here we test this hypothesis. Sequencing NOTCH1 mutant clones in aging human esophagus reveals frequent biallelic mutations that block NOTCH1 signaling. In mouse esophagus, heterozygous Notch1 mutation confers a competitive advantage over wild-type cells, an effect enhanced by loss of the second allele. Widespread Notch1 loss alters transcription but has minimal effects on the epithelial structure and cell dynamics. In a carcinogenesis model, Notch1 mutations were less prevalent in tumors than normal epithelium. Deletion of Notch1 reduced tumor growth, an effect recapitulated by anti-NOTCH1 antibody treatment. Notch1 null tumors showed reduced proliferation. We conclude that Notch1 mutations in normal epithelium are beneficial as wild-type Notch1 favors tumor expansion. NOTCH1 blockade may have therapeutic potential in preventing esophageal squamous cancer.


Asunto(s)
Neoplasias Esofágicas , Animales , Humanos , Ratones , Persona de Mediana Edad , Carcinogénesis/patología , Epitelio/patología , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patología , Mutación , Receptor Notch1/genética
8.
Nat Cell Biol ; 24(12): 1687-1688, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36357620
9.
Nat Commun ; 13(1): 6206, 2022 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-36266286

RESUMEN

Aging normal human oesophagus accumulates TP53 mutant clones. These are the origin of most oesophageal squamous carcinomas, in which biallelic TP53 disruption is almost universal. However, how p53 mutant clones expand and contribute to cancer development is unclear. Here we show that inducing the p53R245W mutant in single oesophageal progenitor cells in transgenic mice confers a proliferative advantage and clonal expansion but does not disrupt normal epithelial structure. Loss of the remaining p53 allele in mutant cells results in genomically unstable p53R245W/null epithelium with giant polyaneuploid cells and copy number altered clones. In carcinogenesis, p53 mutation does not initiate tumour formation, but tumours developing from areas with p53 mutation and LOH are larger and show extensive chromosomal instability compared to lesions arising in wild type epithelium. We conclude that p53 has distinct functions at different stages of carcinogenesis and that LOH within p53 mutant clones in normal epithelium is a critical step in malignant transformation.


Asunto(s)
Carcinogénesis , Proteína p53 Supresora de Tumor , Humanos , Ratones , Animales , Proteína p53 Supresora de Tumor/genética , Carcinogénesis/genética , Células Clonales , Esófago , Ratones Transgénicos , Inestabilidad Cromosómica , Mutación
10.
Cancer Discov ; 12(7): 1642-1655, 2022 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-35397477

RESUMEN

Epithelial stem cells accumulate mutations throughout life. Some of these mutants increase competitive fitness and may form clones that colonize the stem cell niche and persist to acquire further genome alterations. After a transient expansion, mutant stem cells must revert to homeostatic behavior so normal tissue architecture is maintained. Some positively selected mutants may promote cancer development, whereas others inhibit carcinogenesis. Factors that shape the mutational landscape include wild-type and mutant stem cell dynamics, competition for the niche, and environmental exposures. Understanding these processes may give new insight into the basis of cancer risk and opportunities for cancer prevention. SIGNIFICANCE: Recent advances in sequencing have found somatic mutations in all epithelial tissues studied to date. Here we review how the mutational landscape of normal epithelia is shaped by clonal competition within the stem cell niche combined with environmental exposures. Some of the selected mutant genes are oncogenic, whereas others may be inhibitory of transformation. Discoveries in this area leave many open questions, such as the definition of cancer driver genes, the mechanisms by which tissues constrain a high proportion of oncogenic mutant cells, and whether clonal fitness can be modulated to decrease cancer risk.


Asunto(s)
Carcinogénesis , Neoplasias , Carcinogénesis/genética , Células Clonales , Epitelio , Humanos , Mutación , Neoplasias/genética
11.
Micromachines (Basel) ; 14(1)2022 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-36677144

RESUMEN

Red blood cells (RBCs) or erythrocytes are essential for oxygenating the peripherical tissue in the human body. Impairment of their physical properties may lead to severe diseases. Optical tweezers have in experiments been shown to be a powerful tool for assessing the biochemical and biophysical properties of RBCs. Despite this success there has been little theoretical work investigating of the stability of erythrocytes in optical tweezers. In this paper we report a numerical study of the trapping of RBCs in the healthy, native biconcave disk conformation in optical tweezers using the ray optics approximation. We study trapping using both single- and dual-beam optical tweezers and show that the complex biconcave shape of the RBC is a significant factor in determining the optical forces and torques on the cell, and ultimately the equilibrium configuration of the RBC within the trap. We also numerically demonstrate how the addition of a third or even fourth trapping laser beam can be used to control the cell orientation in the optical trap. The present investigation sheds light on the trapping mechanism of healthy erythrocytes and can be exploited by experimentalist to envisage new experiments.

12.
J R Soc Interface ; 18(183): 20210607, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34637643

RESUMEN

During ageing, normal epithelial tissues progressively accumulate clones carrying mutations that increase mutant cell fitness above that of wild-type cells. Such mutants spread widely through the tissues, yet despite this cellular homeostasis and functional integrity of the epithelia are maintained. Two of the genes most commonly mutated in human skin and oesophagus are p53 and Notch1, both of which are also recurrently mutated in cancers of these tissues. From observations taken in human and mouse epithelia, we find that clones carrying p53 and Notch pathway mutations have different clone dynamics which can be explained by their different responses to local cell crowding. p53 mutant clone growth in mouse epidermis approximates a logistic curve, but feedbacks responding to local crowding are required to maintain tissue homeostasis. We go on to show that the observed ability of Notch pathway mutant cells to displace the wild-type population in the mouse oesophageal epithelium reflects a local density feedback that affects both mutant and wild-type cells equally. We then show how these distinct feedbacks are consistent with the distribution of mutations observed in human datasets and are suggestive of a putative mechanism to constrain these cancer-associated mutants.


Asunto(s)
Epitelio , Receptor Notch1 , Proteína p53 Supresora de Tumor , Animales , Carcinoma de Células Escamosas , Células Clonales , Ratones , Mutación , Receptor Notch1/genética , Proteína p53 Supresora de Tumor/genética
13.
R Soc Open Sci ; 8(5): 202231, 2021 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-34035949

RESUMEN

A single population of progenitor cells maintains many epithelial tissues. Transgenic mouse cell tracking has frequently been used to study the growth dynamics of competing clones in these tissues. A mathematical model (the 'single-progenitor model') has been argued to reproduce the observed progenitor dynamics accurately. This requires three parameters to describe the growth dynamics observed in transgenic mouse cell tracking-a division rate, a stratification rate and the probability of dividing symmetrically. Deriving these parameters is a time intensive and complex process. We compare the alternative strategies for analysing this source of experimental data, identifying an approximate Bayesian computation-based approach as the best in terms of efficiency and appropriate error estimation. We support our findings by explicitly modelling biological variation and consider the impact of different sampling regimes. All tested solutions are made available to allow new datasets to be analysed following our workflows. Based on our findings, we make recommendations for future experimental design.

15.
Science ; 371(6527)2021 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-33479125

RESUMEN

The skin confers biophysical and immunological protection through a complex cellular network established early in embryonic development. We profiled the transcriptomes of more than 500,000 single cells from developing human fetal skin, healthy adult skin, and adult skin with atopic dermatitis and psoriasis. We leveraged these datasets to compare cell states across development, homeostasis, and disease. Our analysis revealed an enrichment of innate immune cells in skin during the first trimester and clonal expansion of disease-associated lymphocytes in atopic dermatitis and psoriasis. We uncovered and validated in situ a reemergence of prenatal vascular endothelial cell and macrophage cellular programs in atopic dermatitis and psoriasis lesional skin. These data illustrate the dynamism of cutaneous immunity and provide opportunities for targeting pathological developmental programs in inflammatory skin diseases.


Asunto(s)
Dermatitis Atópica/embriología , Dermatitis Atópica/patología , Psoriasis/embriología , Psoriasis/patología , Piel/embriología , Animales , Atlas como Asunto , Movimiento Celular , Conjuntos de Datos como Asunto , Células Dendríticas/inmunología , Dermatitis Atópica/inmunología , Fármacos Dermatológicos/farmacología , Humanos , Inmunidad Innata/genética , Metotrexato/farmacología , Ratones , Fagocitos/inmunología , Psoriasis/inmunología , Análisis de la Célula Individual , Piel/citología , Piel/inmunología , Linfocitos T/inmunología , Transcriptoma
16.
Cell Stem Cell ; 28(2): 273-284.e6, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33217323

RESUMEN

Cell fate transitions are frequently accompanied by changes in cell shape and mechanics. However, how cellular mechanics affects the instructive signaling pathways controlling cell fate is poorly understood. To probe the interplay between shape, mechanics, and fate, we use mouse embryonic stem cells (ESCs), which change shape as they undergo early differentiation. We find that shape change is regulated by a ß-catenin-mediated decrease in RhoA activity and subsequent decrease in the plasma membrane tension. Strikingly, preventing a decrease in membrane tension results in early differentiation defects in ESCs and gastruloids. Decreased membrane tension facilitates the endocytosis of FGF signaling components, which activate ERK signaling and direct the exit from the ESC state. Increasing Rab5a-facilitated endocytosis rescues defective early differentiation. Thus, we show that a mechanically triggered increase in endocytosis regulates early differentiation. Our findings are of fundamental importance for understanding how cell mechanics regulates biochemical signaling and therefore cell fate.


Asunto(s)
Células Madre Embrionarias , Células Madre Embrionarias de Ratones , Animales , Diferenciación Celular , Endocitosis , Ratones , Transducción de Señal
17.
Cancer Discov ; 11(2): 340-361, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33087317

RESUMEN

Skin cancer risk varies substantially across the body, yet how this relates to the mutations found in normal skin is unknown. Here we mapped mutant clones in skin from high- and low-risk sites. The density of mutations varied by location. The prevalence of NOTCH1 and FAT1 mutations in forearm, trunk, and leg skin was similar to that in keratinocyte cancers. Most mutations were caused by ultraviolet light, but mutational signature analysis suggested differences in DNA-repair processes between sites. Eleven mutant genes were under positive selection, with TP53 preferentially selected in the head and FAT1 in the leg. Fine-scale mapping revealed 10% of clones had copy-number alterations. Analysis of hair follicles showed mutations in the upper follicle resembled adjacent skin, but the lower follicle was sparsely mutated. Normal skin is a dense patchwork of mutant clones arising from competitive selection that varies by location. SIGNIFICANCE: Mapping mutant clones across the body reveals normal skin is a dense patchwork of mutant cells. The variation in cancer risk between sites substantially exceeds that in mutant clone density. More generally, mutant genes cannot be assigned as cancer drivers until their prevalence in normal tissue is known.See related commentary by De Dominici and DeGregori, p. 227.This article is highlighted in the In This Issue feature, p. 211.


Asunto(s)
Carcinoma Basocelular/genética , Carcinoma de Células Escamosas/genética , Neoplasias Cutáneas/genética , Adulto , Anciano , Cadherinas/genética , Carcinoma Basocelular/patología , Carcinoma de Células Escamosas/patología , Células Clonales , Femenino , Antebrazo , Humanos , Pierna , Masculino , Persona de Mediana Edad , Mutación , Receptor Notch1/genética , Neoplasias Cutáneas/patología , Tórax
18.
Emerg Infect Dis ; 26(8): 1778-1791, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32687030

RESUMEN

Antimicrobial stewardship is a cornerstone of efforts to curtail antimicrobial resistance. To determine factors potentially influencing likelihood of prescribing antimicrobials for animals, we analyzed electronic health records for unwell dogs (n = 155,732 unique dogs, 281,543 consultations) and cats (n = 69,236 unique cats, 111,139 consultations) voluntarily contributed by 173 UK veterinary practices. Using multivariable mixed effects logistic regression, we found that factors associated with decreased odds of systemic antimicrobial prescription were client decisions focused on preventive health: vaccination (dogs, odds ratio [OR] 0.93, 95% CI, 0.90-0.95; cats, OR 0.92, 95% CI 0.89-0.95), insurance (dogs, OR 0.87, 95% CI 0.84-0.90; cats, OR 0.82, 95% CI 0.79-0.86), neutering of dogs (OR 0.90, 95% CI 0.88-0.92), and practices accredited by the Royal College of Veterinary Surgeons (OR 0.79, 95% 95% CI 0.68-0.92). This large multicenter companion animal study demonstrates the potential of preventive healthcare and client engagement to encourage responsible antimicrobial drug use.


Asunto(s)
Antiinfecciosos , Enfermedades de los Gatos , Enfermedades de los Perros , Preparaciones Farmacéuticas , Animales , Antiinfecciosos/uso terapéutico , Enfermedades de los Gatos/tratamiento farmacológico , Enfermedades de los Gatos/epidemiología , Enfermedades de los Gatos/prevención & control , Gatos , Enfermedades de los Perros/tratamiento farmacológico , Enfermedades de los Perros/epidemiología , Enfermedades de los Perros/prevención & control , Perros , Prescripciones , Reino Unido
19.
Microb Drug Resist ; 26(6): 697-708, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32519936

RESUMEN

Antimicrobial resistance is a public health concern. Understanding any role that urban seagulls may have as a reservoir of resistant bacteria could be important for reducing transmission. This study investigated fecal Escherichia coli isolates from seagulls (herring gulls and lesser black-backed gulls) to determine the prevalence of extended-spectrum cephalosporin-resistant (ESC-R) and fluoroquinolone-resistant E. coli among gull species from two cities (Taunton and Birmingham) in the United Kingdom (UK). We characterized the genetic background and carriage of plasmid-mediated resistance genes in extended-spectrum ß-lactamase (ESBL)-producing E. coli obtained from these birds. Sixty ESC-R E. coli isolates were obtained from 39 seagulls (39/78, 50%), of which 28 (28/60, 46.7%) were positive for plasmid-mediated CTX-M and/or AmpC ß-lactamase resistance genes. Among these, blaCTX-M-15, blaCTX-M-14, and blaCMY-2 predominated. Three isolates belonging to the B2-ST131 clone were detected, of which two harbored blaCTX-M-15 (typed to C2/H30Rx) and one harbored blaCTX-M-27 and was typed to C1/H30-R (recently described as the C1-M27 sublineage). The plasmid-mediated quinolone resistance (PMQR) gene carriage prevalence (11.7%) consisted of aac(6')-Ib-cr and qnrB genes. No carbapenem or colistin resistance genes were detected. Urban seagulls in the UK are colonized and can spread major antimicrobial-resistant E. coli isolates harboring ESBL and PMQR determinants, including clinically important strains such as the pandemic clone B2-ST131 and the C1-M27 subclade. This is the first report of ST131-C1-M27 subclade in wildlife in the UK and in seagulls worldwide.


Asunto(s)
Antibacterianos/farmacología , Charadriiformes/microbiología , Farmacorresistencia Bacteriana Múltiple/genética , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Animales , Proteínas Bacterianas , Enfermedades de las Aves/epidemiología , Resistencia a las Cefalosporinas/efectos de los fármacos , Resistencia a las Cefalosporinas/genética , Electroforesis en Gel de Campo Pulsado , Escherichia coli/patogenicidad , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/veterinaria , Proteínas de Escherichia coli/genética , Heces/microbiología , Fluoroquinolonas/farmacología , Pruebas de Sensibilidad Microbiana , Reino Unido , Virulencia/genética , beta-Lactamasas
20.
Nat Genet ; 52(6): 604-614, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32424351

RESUMEN

During aging, progenitor cells acquire mutations, which may generate clones that colonize the surrounding tissue. By middle age, normal human tissues, including the esophageal epithelium (EE), become a patchwork of mutant clones. Despite their relevance for understanding aging and cancer, the processes that underpin mutational selection in normal tissues remain poorly understood. Here, we investigated this issue in the esophageal epithelium of mutagen-treated mice. Deep sequencing identified numerous mutant clones with multiple genes under positive selection, including Notch1, Notch2 and Trp53, which are also selected in human esophageal epithelium. Transgenic lineage tracing revealed strong clonal competition that evolved over time. Clone dynamics were consistent with a simple model in which the proliferative advantage conferred by positively selected mutations depends on the nature of the neighboring cells. When clones with similar competitive fitness collide, mutant cell fate reverts towards homeostasis, a constraint that explains how selection operates in normal-appearing epithelium.


Asunto(s)
Esófago/citología , Mutación , Proteína ADAM10/genética , Secretasas de la Proteína Precursora del Amiloide/genética , Animales , Linaje de la Célula , Dietilnitrosamina/toxicidad , Epitelio/efectos de los fármacos , Epitelio/patología , Epitelio/fisiología , Esófago/fisiología , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Masculino , Proteínas de la Membrana/genética , Ratones Endogámicos C57BL , Ratones Transgénicos , Receptor Notch1/genética , Receptor Notch2/genética , Reproducibilidad de los Resultados , Proteína p53 Supresora de Tumor/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA