Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biol Psychiatry Glob Open Sci ; 4(4): 100315, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38726036

RESUMEN

Background: Fear responses significantly affect daily life and shape our approach to uncertainty. However, the potential resurgence of fear in unfamiliar situations poses a significant challenge to exposure-based therapies for maladaptive fear responses. Nonetheless, how novel contextual stimuli are associated with the relapse of extinguished fear remains unknown. Methods: Using a context-dependent fear renewal model, the functional circuits and underlying mechanisms of the posterior parietal cortex (PPC) and anterior cingulate cortex (ACC) were investigated using optogenetic, histological, in vivo, and ex vivo electrophysiological and pharmacological techniques. Results: We demonstrated that the PPC-to-ACC pathway governs fear relapse in a novel context. We observed enhanced populational calcium activity in the ACC neurons that received projections from the PPC and increased synaptic activity in the basolateral amygdala-projecting PPC-to-ACC neurons upon renewal in a novel context, where excitatory postsynaptic currents amplitudes increased but inhibitory postsynaptic current amplitudes decreased. In addition, we found that parvalbumin-expressing interneurons controlled novel context-dependent fear renewal, which was blocked by the chronic administration of fluoxetine. Conclusions: Our findings highlight the PPC-to-ACC pathway in mediating the relapse of extinguished fear in novel contexts, thereby contributing significant insights into the intricate neural mechanisms that govern fear renewal.


To improve outcomes for exposure-based therapy, it is vital to understand the renewal of fear after extinction in new environments. Using optogenetics and other techniques, Joo et al. found that a brain circuit connecting the posterior parietal cortex (PPC) to the anterior cingulate cortex (ACC) is crucial for the return of fear memories in mice exposed to a novel context. Certain PPC→ACC neuron types and their connections to the amygdala became more active during fear renewal in a novel context, and inhibiting parvalbumin-expressing interneurons reduced this fear response. This study provides insights into the brain mechanisms underlying the reappearance of fear in unfamiliar situations.

2.
Mol Brain ; 13(1): 16, 2020 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-32024548

RESUMEN

The return of fear following extinction therapy is an important issue associated with the treatment of many fear-related disorders. Fear renewal is a suitable model, with which context-dependent modulation of the fear response can be examined. In this model, any context outside of an extinction context (e.g., novel or familiar contexts) could evoke relapse of the fear response. However, brain regions associated with context-dependent modulation are not fully understood. The posterior parietal cortex (PPC) is considered a center for integrating multisensory information and making decisions. To study its role in the contextual modulation of fear relapse, we reversibly inactivated the PPC in mice before they were exposed to various contexts after extinction training. When muscimol was infused into the PPC, fear renewal was impaired in a novel context, but not in a familiar context. Fear relapses were blocked during optogenetic inhibition of the PPC, only when animals were placed in a novel context. We propose that the neural activity of the PPC is necessary for the relapse of a precise response to an extinguished conditioned stimulus in a novel context.


Asunto(s)
Miedo/fisiología , Muscimol/farmacología , Lóbulo Parietal/fisiología , Estimulación Acústica , Animales , Condicionamiento Clásico/fisiología , Señales (Psicología) , Toma de Decisiones , Electrochoque , Extinción Psicológica , Reacción Cataléptica de Congelación , Masculino , Ratones , Ratones Endogámicos C57BL , Optogenética , Lóbulo Parietal/efectos de los fármacos
3.
Front Mol Neurosci ; 12: 192, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31474828

RESUMEN

Recently, we reported that ALWPs, which we developed by combining Liuwei Dihuang pills (LWPs) with antler, regulate the LPS-induced neuroinflammatory response and rescue LPS-induced short- and long-term memory impairment in wild-type (WT) mice. In the present study, we examined the effects of ALWPs on Alzheimer's disease (AD) pathology and cognitive function in WT mice as well as 5x FAD mice (a mouse model of AD). We found that administration of ALWPs significantly reduced amyloid plaque levels in 5x FAD mice and significantly decreased amyloid ß (Aß) levels in amyloid precursor protein (APP)-overexpressing H4 cells. In addition, ALWPs administration significantly suppressed tau hyperphosphorylation in 5x FAD mice. Oral administration of ALWPs significantly improved long-term memory in scopolamine (SCO)-injected WT mice and 5x FAD mice by altering dendritic spine density. Importantly, ALWPs promoted spinogenesis in primary hippocampal neurons and WT mice and modulated the dendritic spine number in an extracellular signal-regulated kinase (ERK)-dependent manner. Taken together, our results suggest that ALWPs are a candidate therapeutic drug for AD that can modulate amyloid plaque load, tau phosphorylation, and synaptic/cognitive function.

4.
Front Aging Neurosci ; 10: 269, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30319390

RESUMEN

Recent studies have shown that Liuwei Dihuang pills (LWPs) can positively affect learning, memory and neurogenesis. However, the underlying molecular mechanisms are not understood. In the present study, we developed ALWPs, a mixture of Antler and LWPs, and investigated whether ALWPs can affect neuroinflammatory responses. We found that ALWPs (500 mg/ml) inhibited lipopolysaccharide (LPS)-induced proinflammatory cytokine IL-1ß mRNA levels in BV2 microglial cells but not primary astrocytes. ALWPs significantly reduced LPS-induced cell-surface levels of TLR4 to alter neuroinflammation. An examination of the molecular mechanisms by which ALWPs regulate the LPS-induced proinflammatory response revealed that ALWPs significantly downregulated LPS-induced levels of FAK phosphorylation, suggesting that ALWPs modulate FAK signaling to alter LPS-induced IL-1ß levels. In addition, treatment with ALWPs followed by LPS resulted in decreased levels of the transcription factor NF-κB in the nucleus compared with LPS alone. Moreover, ALWPs significantly suppressed LPS-induced BV2 microglial cell migration. To examine whether ALWPs modulate learning and memory in vivo, wild-type C57BL/6J mice were orally administered ALWPs (200 mg/kg) or PBS daily for 3 days, intraperitoneally injected (i.p.) with LPS (250 µg/kg) or PBS, and assessed in Y maze and NOR tests. We observed that oral administration of ALWPs to LPS-injected wild-type C57BL/6J mice significantly rescued short- and long-term memory. More importantly, oral administration of ALWPs to LPS-injected wild-type C57BL/6J mice significantly reduced microglial activation in the hippocampus and cortex. Taken together, our results suggest that ALWPs can suppress neuroinflammation-associated cognitive deficits and that ALWPs have potential as a drug for neuroinflammation/neurodegeneration-related diseases, including Alzheimer's disease (AD).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...