Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Water Res ; 220: 118654, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35635916

RESUMEN

Detection of the agricultural acid herbicide MCPA (2-methyl-4-chlorophenoxyacetic acid) in drinking water source catchments is of growing concern, with economic and environmental implications for water utilities and wider ecosystem services. MCPA is poorly adsorbed to soil and highly mobile in water, but hydrological pathway processes are relatively unknown at the catchment scale and limited by coarse resolution data. This understanding is required to target mitigation measures and to provide a framework to monitor their effectiveness. To address this knowledge gap, this study reports findings from river discharge and synchronous MCPA concentration datasets (continuous 7 hour and with additional hourly sampling during storm events) collected over a 7 month herbicide spraying season. The study was undertaken in a surface (source) water catchment (384 km2-of which 154 km2 is agricultural land use) in the cross-border area of Ireland. Combined into loads, and using two pathway separation techniques, the MCPA data were apportioned into event and baseload components and the former was further separated to quantify a quickflow (QF) and other event pathways. Based on the 7 hourly dataset, 85.2 kg (0.22 kg km-2 by catchment area, or 0.55 kg km-2 by agricultural area) of MCPA was exported from the catchment in 7 months. Of this load, 87.7 % was transported via event flow pathways with 72.0 % transported via surface dominated (QF) pathways. Approximately 12 % of the MCPA load was transported via deep baseflows, indicating a persistence in this delayed pathway, and this was the primary pathway condition monitored in a weekly regulatory sampling programme. However, overall, the data indicated a dominant acute, storm dependent process of incidental MCPA loss during the spraying season. Reducing use and/or implementing extensive surface pathway disconnection measures are the mitigation options with greatest potential, the success of which can only be assessed using high temporal resolution monitoring techniques.


Asunto(s)
Ácido 2-Metil-4-clorofenoxiacético , Agua Potable , Herbicidas , Ecosistema , Monitoreo del Ambiente , Herbicidas/análisis , Ríos
2.
Sci Total Environ ; 838(Pt 2): 156080, 2022 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-35605857

RESUMEN

In river catchments used as drinking water sources, high pesticide concentrations in abstracted waters require an expensive treatment step prior to supply. The acid herbicide 2-methyl-4-chlorophenoxyacetic acid (MCPA) is particularly problematic as it is highly mobile in the soil-water environment following application. Here, an agri-environmental scheme (AES) was introduced to a large-scale catchment (384 km2) to potentially reduce the burden of pesticides in the water treatment process. The main measure offered was contractor application of glyphosate by weed wiping as a substitute for boom spraying of MCPA, supported by educational and advisory activities. A combined innovation applied in the assessment was, i) a full before-after-control-impact (BACI) framework over four peak application seasons (April to October 2018 to 2021) where a neighbouring catchment (386 km2) did not have an AES and, ii) an enhanced monitoring approach where river discharge and MCPA concentrations were measured synchronously in each catchment. During peak application periods the sample resolution was every 7 h, and daily during quiescent winter periods. This sampling approach enabled flow- and time-weighted concentrations to be established, and a detailed record of export loads. These loads were up to 0.242 kg km-2 yr-1, and over an order of magnitude higher than previously reported in the literature. Despite this, and accounting for inter-annual and seasonal variations in river discharges, the AES catchment indicated a reduction in both flow- and time-weighted MCPA concentration of up to 21% and 24%, respectively, compared to the control catchment. No pollution swapping was detected. Nevertheless, the percentage of MCPA occurrences above a 0.1 µg L-1 threshold did not reduce and so the need for treatment was not fully resolved. Although the work highlights the advantages of catchment management approaches for pollution reduction in source water catchments, it also indicates that maximising participation will be essential for future AES.


Asunto(s)
Ácido 2-Metil-4-clorofenoxiacético , Herbicidas , Plaguicidas , Contaminantes Químicos del Agua , Herbicidas/análisis , Plaguicidas/análisis , Ríos , Contaminantes Químicos del Agua/análisis
3.
J Contam Hydrol ; 247: 103979, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35231779

RESUMEN

Water quality degradation can be caused by excessive agricultural nutrient transfers from fertilised soils exposed to wet weather. Mitigation measures within the EU Nitrates Directive aim to reduce this pressure by including 'closed' fertiliser spreading periods during wet months. For organic fertilisers such as slurry and manure, this closed period requires sufficient on-farm winter storage and good weather conditions to relieve storage at the end of the period. Therefore, robust scientific evidence is needed to support the measure. Incidental nutrient transfers of recently applied organic fertilisers in wet weather can also be complicated by synchronous transfers from residual soil stores and tracing is required for risk assessments. The combination of nutrient monitoring and biomarker analyses may aid this and one such biomarker suite is faecal steroids. Accordingly, this study investigated the persistence of steroids and their association with phosphorus during leaching episodes. The focus was on the coupled behaviour of steroids and total phosphorus (TP) concentrations in sub-surface hydrological pathways. Cattle slurry was applied to monolith lysimeters either side of a closed period and concentrations of both steroids and TP were monitored in the leachate. The study showed no significant effect of the treatment (average p = 0.17), though tracer concentrations did significantly change over time (average p = 0.001). While the steroidal concentration ratio was validated for herbivorous faecal pollution in the leachate, there was a weak positive correlation between the steroids and TP. Further investigation at more natural scales (hillslope/catchment) is required to confirm tracer behaviours/correlations and to compliment this sub-surface pathway study.


Asunto(s)
Fertilizantes , Fósforo , Animales , Bovinos , Fertilizantes/análisis , Estiércol , Fósforo/análisis , Suelo , Esteroides
4.
Sci Total Environ ; 787: 147576, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34000530

RESUMEN

The agri-food economy can be a significant driver of water quality pressures but the role of hydro-meteorological patterns in a changing climate also requires consideration. For this purpose, an assessment was made of a ten-year synchronous high temporal resolution water quality and hydro-meteorological dataset in Irish agricultural catchments. Changes occurring to rainfall intensity and soil temperature patterns were found to be important drivers of nutrient mobility in soils. There were links between the intensity of the North Atlantic Oscillation over the decade and large shifts in baseline nutrient concentrations in catchments. The data also revealed extreme weather impacts to pollution patterns including short periods of rain induced nutrient flux, that exceeded average annual mass loads in these catchments, and drought influences on point source pollution. These influences need consideration, and may require different mitigation strategies, as links between water quality land use pressure and water quality state in regulatory reviews. In a decade of both increased land use source and hydro-meteorological transport pressures, water quality natural capital in Ireland has faced a perfect storm. Such conditions are difficult to model and only revealed in high temporal resolution datasets.

5.
Sci Total Environ ; 769: 144468, 2021 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-33486183

RESUMEN

Unrestricted cattle access to streams and rivers can be a significant source of pollution in fluvial systems, contributing to bank erosion and fine sediment inputs. Despite this pressure, observational data are scarce. This study quantified stream bank geomorphic modifications caused by cattle access at fine scale using motion-capture cameras and Terrestrial Laser Scanning (TLS) campaigns. Continuous monitoring of rainfall, discharge, conductivity and turbidity further augmented this dataset. The application of these techniques extended over a five-month grazing period in agricultural sub-catchments with intensive cattle production. At low flow, high-resolution water quality data showed that the frequency of cattle activity in and around stream margins was associated with elevated turbidity signals downstream. However, when elevated turbidity coincided with high flow events, it was not possible to distinguish between local erosion and upstream sediment transfers. TLS results indicated a loss of 0.141 m3 to 1.035 m3 stream bank material, which equates to 0.067 m3 m-2 - 0.092 m3 m-2 of stream bank area (between 27% and 41% in the <2 mm fraction) over the study period from sites with 130 to 1154 discrete cattle access hits. Multiple linear regression showed that the observed geomorphic volume loss could not be explained by natural processes alone (hydrometeorology), but was more significantly related to cattle-access frequency as the principal driver. The geomorphic volume loss had the potential to impact 29 m2 to 197 m2 of stream bed with fine sediment (<2 mm) from the three study sites. Grazing parcels adjacent to streams in the study sub-catchments were enumerated at 18.4 parcels km-2 and so the results of this investigation potentially scale to a considerable fine sediment risk. Regulations and time-limited incentives to exclude cattle access to stream channels should therefore expect to reduce sediment pressures where these measures are targeted at access points.

6.
Sci Total Environ ; 754: 142112, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33254851

RESUMEN

Colloid-facilitated transport can be important for preferential transfer of phosphorus (P) through the soil profile to groundwater and may in part explain elevated P concentrations in surface water during baseflow and particularly high flow conditions. To investigate the potential for colloidal P (Pcoll) mobilisation in soils, this study assessed the role of soil chemical properties and P fertilizer type on medium-sized soil Pcoll (200-450 nm) and its association with soil solution soluble bioavailable P (<450 nm). Hillslope soils from three agricultural catchments were sampled and untreated and treated (cattle slurry and synthetic fertilizer) subsamples were incubated. Soil supernatants were analysed for P and soil Water Dispersible Colloids (WDC) were extracted for analysis of P and P-binding materials. Soils physicochemical properties including degree of P saturation (DPS) and P sorption properties were determined. Results indicated that medium-sized Pcoll was mostly unreactive P associated to some extent to amorphous forms of Fe. Medium-sized Pcoll concentrations correlated negatively with soil maximum P sorption capacity and soluble P concentrations increased with increasing DPS. In soil with low sorption properties, cattle slurry increased soluble P concentrations by 0.008-0.013 mg l-1 and DPS but did not influence medium-sized Pcoll. Synthetic fertilizer increased medium-sized reactive Pcoll by 0.011 mg l-1 (0.088 mg kg-1 soil) and DPS in a soil with lower DPS whereas it decreased it by 0.005 mg l-1 (0.040 mg kg-1 soil) in a soil with higher DPS. Additional soil parameters (M3-Fe, M3-Al, M3-P, and DPS) should be included in soil testing, especially in Cambisol/Podzol soils, to identify critical areas where risks of Pcoll mobilisation are important. Further research should include the roles of finer colloidal and nanoparticulate (<200 nm) soil P fractions and soluble P to inform understanding of plant uptake and assess environmental risk.

7.
Water Air Soil Pollut ; 231(10): 524, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33088005

RESUMEN

Clean water is a precious resource, and policies/programmes are implemented worldwide to protect and/or improve water quality. Faecal pollution can be a key contributor to water quality decline causing eutrophication through nutrient enrichment and pathogenic contamination. The robust sourcing of faecal pollutants is important to be able to target the appropriate sector and to engage managers. Biomarker technology has the potential for source confirmation, by using, for example the biomarker suite of steroids. Steroids have been used in the differentiation of human and animal faeces; however, there is no unequivocal extraction technique. Some of the methods used include (i) Soxhlet extraction, (ii) Bligh and Dyer (BD) extraction, and (iii) accelerated solvent extraction (ASE). The less costly and time intensive technique of ASE is particularly attractive, but a current research gap concerns further comparisons regarding ASE lipid extraction from soils/slurries compared with the more traditional Soxhlet and BD extractions. Accordingly, a randomised complete block experiment was implemented to assess differences between the three extraction methods, differences between the different sample types, and the interactions between these two factors. Following GC-MS, it was found that there was no significant difference between the results of the steroid extraction methods, regardless of the type of sample used, for the quantity of each steroid extracted. It was concluded that ASE could be used confidently instead of the more established steroid extraction methods, thereby delivering time and cost savings.

8.
Sci Total Environ ; 747: 141232, 2020 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-32771787

RESUMEN

Worldwide herbicide use in agriculture, whilst safeguarding yields also presents water quality issues. Controlling factors in agricultural catchments include both static and dynamic parameters. The present study investigated the occurrence of herbicides in streams and groundwater in two meso-scale catchments with contrasting flow controls and agricultural landuse (grassland and arable land). Using a multi-dimensional approach, streams were monitored from November 2018 to November 2019 using Chemcatcher® passive sampling devices and groundwater was sampled in 95 private drinking water wells. The concentrations of herbicides were larger in the stream of the Grassland catchment (8.9-472.6 ng L-1) dominated by poorly drained soils than in the Arable catchment (0.9-169.1 ng L-1) dominated by well-drained soils. Incidental losses of herbicides during time of application and low flows in summer caused concentrations of MCPA, Fluroxypyr, Trichlorpyr, Clopyralid and Mecoprop to exceeded the European Union (EU) drinking water standard due to a lack of dilution. Herbicides were present in the stream throughout the year and the total mass load was higher in winter flows, suggesting a persistence of primary chemical residues in soil and sub-surface environments and restricted degradation. Losses of herbicides to the streams were source limited and influenced by hydrological conditions. Herbicides were detected in 38% of surveyed drinking water wells. While most areas had concentrations below the EU drinking water standard some areas with well-drained soils in the Grassland catchment, had concentrations exceeding recommendations. Individual wells had concentrations of Clopyralid (619 ng L-1) and Trichlorpyr (650 ng L-1). Despite the study areas not usually associated with herbicide pollution, and annual mass loads being comparatively low, many herbicides were present in both surface and groundwater, sometimes above the recommendations for drinking water. This whole catchment assessment provides a basis to develop collaborative measures to mitigate pollution of water by herbicides.


Asunto(s)
Agua Subterránea , Herbicidas , Contaminantes Químicos del Agua , Agricultura , Monitoreo del Ambiente , Herbicidas/análisis , Contaminantes Químicos del Agua/análisis , Calidad del Agua
9.
J Environ Qual ; 48(5): 1218-1233, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31589714

RESUMEN

The evolution of phosphorus (P) management decision support tools (DSTs) and systems (DSS), in support of food and environmental security has been most strongly affected in developed regions by national strategies (i) to optimize levels of plant available P in agricultural soils, and (ii) to mitigate P runoff to water bodies. In the United States, Western Europe, and New Zealand, combinations of regulatory and voluntary strategies, sometimes backed by economic incentives, have often been driven by reactive legislation to protect water bodies. Farmer-specific DSSs, either based on modeling of P transfer source and transport mechanisms, or when coupled with farm-specific information or local knowledge, have typically guided best practices, education, and implementation, yet applying DSSs in data poor catchments and/or where user adoption is poor hampers the effectiveness of these systems. Recent developments focused on integrated digital mapping of hydrologically sensitive areas and critical source areas, sometimes using real-time data and weather forecasting, have rapidly advanced runoff modeling and education. Advances in technology related to monitoring, imaging, sensors, remote sensing, and analytical instrumentation will facilitate the development of DSSs that can predict heterogeneity over wider geographical areas. However, significant challenges remain in developing DSSs that incorporate "big data" in a format that is acceptable to users, and that adequately accounts for catchment variability, farming systems, and farmer behavior. Future efforts will undoubtedly focus on improving efficiency and conserving phosphate rock reserves in the face of future scarcity or prohibitive cost. Most importantly, the principles reviewed here are critical for sustainable agriculture.


Asunto(s)
Agricultura , Fósforo , Ambiente , Nueva Zelanda , Suelo
10.
Sci Total Environ ; 687: 277-286, 2019 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-31207517

RESUMEN

Agricultural fields with above optimum soil phosphorus (P) are considered to pose risks to water quality and especially when those areas are coincident with hydrologically sensitive areas (HSAs) that focus surface runoff pathways. This is a challenge to manage in areas of agricultural intensity in surface water dominated catchments where water quality targets have to be met. In this study, a soil P survey of 13 sub-catchments and 7693 fields was undertaken in a 220km2 catchment. HSAs were also determined as the top 25th percentile risk from a runoff routing model that used a LiDAR digital elevation model and soil hydraulic conductivity properties. Distributions of these spatial data were compared with river soluble reactive phosphorus (SRP) concentration measured fortnightly over one year. The results showed that 41% of fields exceeded the agronomic optimum for soil P across the sub-catchments. When compared with the available water quality data, the results indicated that the high soil P carrying capacity area of the sub-catchments was 15%. Combining high soil P and HSA, the carrying capacity area of the sub-catchments was 1.5%. The opportunities to redistribute these risks were analysed on fields with below optimum soil P and where HSA risk was also minimal. These ranged from 0.4% to 13.8% of sub-catchment areas and this limited potential, unlikely to fully reduce the P pressure to over-supplied fields, would need to be considered alongside addressing this over-supply and also with targeted HSA interception measures.

11.
Sci Rep ; 8(1): 944, 2018 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-29343796

RESUMEN

Management of agricultural diffuse pollution to water remains a challenge and is influenced by the complex interactions of rainfall-runoff pathways, soil and nutrient management, agricultural landscape heterogeneity and biogeochemical cycling in receiving water bodies. Amplified cycles of weather can also influence nutrient loss to water although they are less considered in policy reviews. Here, we present the development of climate-chemical indicators of diffuse pollution in highly monitored catchments in Western Europe. Specifically, we investigated the influences and relationships between weather processes amplified by the North Atlantic Oscillation during a sharp upward trend (2010-2016) and the patterns of diffuse nitrate and phosphorus pollution in rivers. On an annual scale, we found correlations between local catchment-scale nutrient concentrations in rivers and the influence of larger, oceanic-scale climate patterns defined by the intensity of the North Atlantic Oscillation. These influences were catchment-specific showing positive, negative or no correlation according to a typology. Upward trends in these decadal oscillations may override positive benefits of local management in some years or indicate greater benefits in other years. Developing integrated climate-chemical indicators into catchment monitoring indicators will provide a new and important contribution to water quality management objectives.

12.
Sci Total Environ ; 599-600: 1275-1287, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-28531946

RESUMEN

Diffuse transfer of nitrogen (N) and phosphorus (P) in agricultural catchments is controlled by the mobilisation of sources and their delivery to receiving waters. While plot scale experiments have focused on mobilisation processes, many catchment scale studies have hitherto concentrated on the controls of dominant flow pathways on nutrient delivery. To place mobilisation and delivery at a catchment scale, this study investigated their relative influence on contrasting nitrate-N and soluble P concentrations and N:P ratios in two shallow groundwater fed catchments with different land use (grassland and arable) on the Atlantic seaboard of Europe. Detailed datasets of N and P inputs, concentrations in shallow groundwater and concentrations in receiving streams were analysed over a five year period (October 2010-September 2015). Results showed that nitrate-N and soluble P concentrations in shallow groundwater give a good indication of stream concentrations, which suggests a dominant control of mobilisation processes on stream exports. Near-stream attenuation of nitrate-N (-30%), likely through denitrification and dilution, and enrichment in soluble P (+100%), through soil-groundwater interactions, were similar in both catchments. The soil, climate and land use controls on mobilisation were also investigated. Results showed that grassland tended to limit nitrate-N leaching as compared to arable land, but grassland could also contribute to increased P solubilisation. In the context of land use change in these groundwater fed systems, the risk of pollution swapping between N and P must be carefully considered, particularly for interactions of land use with soil chemistry and climate.

13.
Sci Total Environ ; 590-591: 469-483, 2017 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-28284645

RESUMEN

Stormflow and baseflow phosphorus (P) concentrations and loads in rivers may exert different ecological pressures during different seasons. These pressures and subsequent impacts are important to disentangle in order to target and monitor the effectiveness of mitigation measures. This study investigated the influence of stormflow and baseflow P pressures on stream ecology in six contrasting agricultural catchments. A five-year high resolution dataset was used consisting of stream discharge, P chemistry, macroinvertebrate and diatom ecology, supported with microbial source tracking and turbidity data. Total reactive P (TRP) loads delivered during baseflows were low (1-7% of annual loads), but TRP concentrations frequently exceeded the environmental quality standard (EQS) of 0.035mgL-1 during these flows (32-100% of the time in five catchments). A pilot microbial source tracking exercise in one catchment indicated that both human and ruminant faecal effluents were contributing to these baseflow P pressures but were diluted at higher flows. Seasonally, TRP concentrations tended to be highest during summer due to these baseflow P pressures and corresponded well with declines in diatom quality during this time (R2=0.79). Diatoms tended to recover by late spring when storm P pressures were most prevalent and there was a poor relationship between antecedent TRP concentrations and diatom quality in spring (R2=0.23). Seasonal variations were less apparent in the macroinvertebrate indices; however, there was a good relationship between antecedent TRP concentrations and macroinvertebrate quality during spring (R2=0.51) and summer (R2=0.52). Reducing summer point source discharges may be the quickest way to improve ecological river quality, particularly diatom quality in these and similar catchments. Aligning estimates of P sources with ecological impacts and identifying ecological signals which can be attributed to storm P pressures are important next steps for successful management of agricultural catchments at these scales.


Asunto(s)
Monitoreo del Ambiente , Fósforo/química , Ríos/química , Movimientos del Agua , Agricultura , Animales , Diatomeas , Ecología , Humanos , Invertebrados
14.
Environ Sci Technol ; 50(19): 10297-10307, 2016 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-27570873

RESUMEN

New scientific understanding is catalyzed by novel technologies that enhance measurement precision, resolution or type, and that provide new tools to test and develop theory. Over the last 50 years, technology has transformed the hydrologic sciences by enabling direct measurements of watershed fluxes (evapotranspiration, streamflow) at time scales and spatial extents aligned with variation in physical drivers. High frequency water quality measurements, increasingly obtained by in situ water quality sensors, are extending that transformation. Widely available sensors for some physical (temperature) and chemical (conductivity, dissolved oxygen) attributes have become integral to aquatic science, and emerging sensors for nutrients, dissolved CO2, turbidity, algal pigments, and dissolved organic matter are now enabling observations of watersheds and streams at time scales commensurate with their fundamental hydrological, energetic, elemental, and biological drivers. Here we synthesize insights from emerging technologies across a suite of applications, and envision future advances, enabled by sensors, in our ability to understand, predict, and restore watershed and stream systems.


Asunto(s)
Hidrología , Ríos , Temperatura , Calidad del Agua
15.
Sci Total Environ ; 572: 618-625, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27185348

RESUMEN

High ecological status at river sites is an indicator of minimal disturbance from anthropogenic activities and the presence of ecologically important species and communities. However, a lack of clarity on what factors cause sites to lose high ecological status is limiting the ability to maintain the quality of these sites. Examination of ecological status records at 508 high status river sites throughout the Republic of Ireland revealed that 337 had fallen below high status at some point between 2001 and 2012 due to changes in invertebrate communities. A geographical information system was used to characterise land use and environmental variables in the catchment, riparian and reach areas upstream of the sites. The relationships between these variables at the three spatial scales and whether or not river sites had maintained high ecological status were then estimated by multiple logistic regression and propensity modelling. The results indicated that grassland at either catchment or riparian scales had a greater negative impact on high ecological status than at the reach scale. This effect appeared to be strongest for upland, steeply sloping rivers that are subject to high rainfall, possibly due to the presence of sensitive biota and/or a greater potential for erosion. These results highlighted the need for better management of grassland upstream of the high status sites, with a focus on river alterations and critical source areas of nutrients, sediments and pesticides that are hydrologically connected to the river. Sustainable management practices and land use planning in those areas will need to be considered carefully if the aim of maintaining high ecological status at river sites is to be achieved.


Asunto(s)
Monitoreo del Ambiente/métodos , Ríos , Agricultura , Ecosistema , Ambiente , Bosques , Sistemas de Información Geográfica , Pradera , Irlanda , Lluvia
16.
Sci Total Environ ; 553: 404-415, 2016 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-26933967

RESUMEN

Managing incidental losses associated with liquid slurry applications during closed periods has significant cost and policy implications and the environmental data required to review such a measure are difficult to capture due to storm dependencies. Over four years (2010-2014) in five intensive agricultural catchments, this study used high-resolution total and total reactive phosphorus (TP and TRP), total oxidised nitrogen (TON) and suspended sediment (SS) concentrations with river discharge data to investigate the magnitude and timing of nutrient losses. A large dataset of storm events (defined as 90th percentile discharges), and associated flow-weighted mean (FWM) nutrient concentrations and TP/SS ratios, was used to indicate when losses were indicative of residual or incidental nutrient transfers. The beginning of the slurry closed period was reflective of incidental and residual transfers with high storm FWM P (TP and TRP) concentrations, with some catchments also showing elevated storm TP:SS ratios. This pattern diminished at the end of the closed period in all catchments. Total oxidised N behaved similarly to P during storms in the poorly drained catchments and revealed a long lag time in other catchments. Low storm FWM P concentrations and TP:SS ratios during the weeks following the closed period suggests that nutrients either weren't applied during this time (best times chosen) or that they were applied to less risky areas (best places chosen). For other periods such as late autumn and during wet summers, where storm FWM P concentrations and TP:SS ratios were high, it is recommended that an augmentation of farmer knowledge of soil drainage characteristics with local and detailed current and forecast soil moisture conditions will help to strengthen existing regulatory frameworks to avoid storm driven incidental nutrient transfers.

17.
J Environ Manage ; 124: 147-55, 2013 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-23490624

RESUMEN

Widespread deterioration in water quality as a result of anthropogenic activity has led to the development and implementation of measures aimed at the protection of water resources in the EU. To date, however, relatively little attention has been paid to the effectiveness of these measures. Evidence from an enrichment-sensitive lake permitted reconstructions of changes in ecological and chemical water quality over the last c. 150-200 years, a period that includes a mid to late 20th century intensification of agriculture that was widely experienced across the European Union and the subsequent implementation of measures aimed at protecting water resources against pollution from farming. The data show the development of a more nutrient-tolerant diatom community from early in the 20th century, while the main trophic changes occurred from the 1950s, with the site becoming eutrophic by the 1960s. Heightened enrichment is thought to be linked to enhanced levels of phosphorus (P) transfers from the surrounding grassland catchment owing to an intensification of agricultural activities locally. Most recently, since the late 1990s and particularly post-2007, evidence suggests a decrease in aquatic enrichment, despite continued increases in agricultural intensification. This decoupling is likely to mark a successful implementation in 2006 of measures aimed at decreasing diffuse nutrient transfers from catchments linked to agri-environmental policies in Europe. The research highlights the importance of enrichment-sensitive water bodies as sentinel sites in the monitoring of both external and internal nutrient loadings as agricultural activities and other pressures change within the context of implementing regulatory responses to earlier declines in water quality.


Asunto(s)
Agricultura , Movimientos del Agua , Estaciones del Año
18.
Water Res ; 46(7): 2225-36, 2012 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-22377147

RESUMEN

Conduit and other karstic flows to aquifers, connecting agricultural soils and farming activities, are considered to be the main hydrological mechanisms that transfer phosphorus from the land surface to the groundwater body of a karstified aquifer. In this study, soil source and pathway components of the phosphorus (P) transfer continuum were defined at a high spatial resolution; field-by-field soil P status and mapping of all surface karst features was undertaken in a > 30 km(2) spring contributing zone. Additionally, P delivery and water discharge was monitored in the emergent spring at a sub-hourly basis for over 12 months. Despite moderate to intensive agriculture, varying soil P status with a high proportion of elevated soil P concentrations and a high karstic connectivity potential, background P concentrations in the emergent groundwater were low and indicative of being insufficient to increase the surface water P status of receiving surface waters. However, episodic P transfers via the conduit system increased the P concentrations in the spring during storm events (but not >0.035 mg total reactive P L(-1)) and this process is similar to other catchments where the predominant transfer is via episodic, surface flow pathways; but with high buffering potential over karst due to delayed and attenuated runoff. These data suggest that the current definitions of risk and vulnerability for P delivery to receiving surface waters should be re-evaluated as high source risk need not necessarily result in a water quality impact. Also, inclusion of conduit flows from sparse water quality data in these systems may over-emphasise their influence on the overall status of the groundwater body.


Asunto(s)
Agua Subterránea/química , Fósforo/análisis , Suelo/química , Movimientos del Agua , Contaminantes Químicos del Agua/análisis , Agricultura , Fenómenos Geológicos , Irlanda , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...