Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Lancet Infect Dis ; 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39245055

RESUMEN

BACKGROUND: Inclusion of additional influenza A/H3N2 strains in seasonal influenza vaccines could expand coverage against multiple, antigenically distinct, cocirculating A/H3N2 clades and potentially replace the no longer circulating B/Yamagata strain. We aimed to evaluate the safety and immunogenicity of three next-generation seasonal influenza mRNA vaccines with different compositions that encode for haemagglutinins of multiple A/H3N2 strains, with or without the B/Yamagata strain, in adults. METHODS: This randomised, open-label, phase 1/2 trial enrolled healthy adults aged 50-75 years across 22 sites in the USA. Participants were randomly assigned (1:1:1:1:1:1:1) via interactive response technology to receive a single dose of mRNA-1011.1 (pentavalent; containing one additional A/H3N2 strain [Newcastle]), mRNA-1011.2 (quadrivalent; B/Yamagata replaced with one additional A/H3N2 strain [Newcastle]), mRNA-1012 at one of two dose levels (pentavalent; B/Yamagata replaced with two additional A/H3N2 strains [Newcastle and Hong Kong]), or one of three quadrivalent mRNA-1010 controls each encoding one of the A/H3N2 study strains. The primary outcomes were safety, evaluated in all randomly assigned participants who received a study vaccination (safety population), and reactogenicity, evaluated in all participants from the safety population who contributed any solicited adverse reaction data (solicited safety population). The secondary outcome was humoral immunogenicity of investigational mRNA vaccines at day 29 versus mRNA-1010 control vaccines based on haemagglutination inhibition antibody (HAI) assay in the per-protocol population. Here, we summarise findings from the planned interim analysis after participants had completed day 29. The study is registered with ClinicalTrials.gov, NCT05827068, and is ongoing. FINDINGS: Between March 27 and May 9, 2023, 1183 participants were screened for eligibility, 699 (59·1%) were randomly assigned, and 696 (58·8%) received vaccination (safety population, n=696; solicited safety population, n=694; per-protocol population, n=646). 382 (55%) of the 696 participants in the safety population self-reported as female and 314 (45%) as male. Frequencies of solicited adverse reactions were similar across vaccine groups; 551 (79%) of 694 participants reported at least one solicited adverse reaction within 7 days after vaccination and 83 (12%) of 696 participants reported at least one unsolicited adverse event within 28 days after vaccination. No vaccine-related serious adverse events or deaths were reported. All three next-generation influenza vaccines elicited robust antibody responses against vaccine-matched influenza A and B strains at day 29 that were generally similar to mRNA-1010 controls, and higher responses against additional A/H3N2 strains that were not included within respective mRNA-1010 controls. Day 29 geometric mean fold rises in HAI titres from day 1 against vaccine-matched A/H3N2 strains were 3·0 (95% CI 2·6-3·6; Darwin) and 3·1 (2·6-3·8; Newcastle) for mRNA-1011.1; 3·3 (2·7-4·1; Darwin) and 4·2 (3·4-5·2; Newcastle) for mRNA-1011.2; 3·4 (2·9-4·0; Darwin), 4·5 (3·6-5·5; Newcastle), and 5·1 (4·2-6·2; Hong Kong) for mRNA-1012 50·0 µg; and 2·6 (2·2-3·1; Darwin), 3·7 (3·0-4·6; Newcastle), and 4·1 (3·3-5·1; Hong Kong) for mRNA-1012 62·5 µg. Inclusion of additional A/H3N2 strains did not reduce responses against influenza A/H1N1 or influenza B strains, and removal of B/Yamagata did not affect responses to B/Victoria. INTERPRETATION: These data support the continued clinical development of mRNA-based next-generation seasonal influenza vaccines with broadened influenza A/H3N2 strain coverage. FUNDING: Moderna.

2.
Cell ; 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39236707

RESUMEN

In 2022, mpox virus (MPXV) spread worldwide, causing 99,581 mpox cases in 121 countries. Modified vaccinia Ankara (MVA) vaccine use reduced disease in at-risk populations but failed to deliver complete protection. Lag in manufacturing and distribution of MVA resulted in additional MPXV spread, with 12,000 reported cases in 2023 and an additional outbreak in Central Africa of clade I virus. These outbreaks highlight the threat of zoonotic spillover by Orthopoxviruses. mRNA-1769, an mRNA-lipid nanoparticle (LNP) vaccine expressing MPXV surface proteins, was tested in a lethal MPXV primate model. Similar to MVA, mRNA-1769 conferred protection against challenge and further mitigated symptoms and disease duration. Antibody profiling revealed a collaborative role between neutralizing and Fc-functional extracellular virion (EV)-specific antibodies in viral restriction and ospinophagocytic and cytotoxic antibody functions in protection against lesions. mRNA-1769 enhanced viral control and disease attenuation compared with MVA, highlighting the potential for mRNA vaccines to mitigate future pandemic threats.

3.
Sci Transl Med ; 15(716): eadg3540, 2023 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-37792954

RESUMEN

Mpox virus (MPXV) caused a global outbreak in 2022. Although smallpox vaccines were rapidly deployed to curb spread and disease among those at highest risk, breakthrough disease was noted after complete immunization. Given the threat of additional zoonotic events and the virus's evolving ability to drive human-to-human transmission, there is an urgent need for an MPXV-specific vaccine that confers protection against evolving MPXV strains and related orthopoxviruses. Here, we demonstrate that an mRNA-lipid nanoparticle vaccine encoding a set of four highly conserved MPXV surface proteins involved in virus attachment, entry, and transmission can induce MPXV-specific immunity and heterologous protection against a lethal vaccinia virus (VACV) challenge. Compared with modified vaccinia virus Ankara (MVA), which forms the basis for the current MPXV vaccine, immunization with an mRNA-based MPXV vaccine generated superior neutralizing activity against MPXV and VACV and more efficiently inhibited spread between cells. We also observed greater Fc effector TH1-biased humoral immunity to the four MPXV antigens encoded by the vaccine, as well as to the four VACV homologs. Single MPXV antigen-encoding mRNA vaccines provided partial protection against VACV challenge, whereas multivalent vaccines combining mRNAs encoding two, three, or four MPXV antigens protected against disease-related weight loss and death equal or superior to MVA vaccination. These data demonstrate that an mRNA-based MPXV vaccine confers robust protection against VACV.


Asunto(s)
Vacuna contra Viruela , Vacunas Virales , Humanos , Monkeypox virus/genética , Virus Vaccinia/genética , Vacuna contra Viruela/genética , Antígenos Virales , ARN Mensajero/genética
4.
Vaccines (Basel) ; 10(12)2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36560488

RESUMEN

Layer-by-layer microparticle (LbL-MP) fabrication was used to produce synthetic vaccines presenting a fusion peptide containing RSV G protein CX3C chemokine motif and a CD8 epitope of the RSV matrix protein 2 (GM2) with or without a covalently linked TLR2 agonist (Pam3.GM2). Immunization of BALB/c mice with either GM2 or Pam3.GM2 LbL-MP in the absence of adjuvant elicited G-specific antibody responses and M2-specific CD8+ T-cell responses. Following challenge with RSV, mice immunized with the GM2 LbL-MP vaccine developed a Th2-biased immune response in the lungs with elevated levels of IL-4, IL-5, IL-13, and eotaxin in the bronchoalveolar lavage (BAL) fluid and a pulmonary influx of eosinophils. By comparison, mice immunized with the Pam3.GM2 LbL-MP vaccine had considerably lower to non-detectable levels of the Th2 cytokines and chemokines and very low numbers of eosinophils in the BAL fluid post-RSV challenge. In addition, mice immunized with the Pam3.GM2 LbL-MP also had higher levels of RSV G-specific IgG2a and IgG2b in the post-challenge BAL fluid compared to those immunized with the GM2 LbL-MP vaccine. While both candidates protected mice from infection following challenge, as evidenced by the reduction or elimination of RSV plaques, the inclusion of the TLR2 agonist yielded a more potent antibody response, greater protection, and a clear shift away from Th2/eosinophil responses. Since the failure of formalin-inactivated RSV (FI-RSV) vaccines tested in the 1960s has been hypothesized to be partly due to the ablation of host TLR engagement by the vaccine and inappropriate Th2 responses upon subsequent viral infection, these findings stress the importance of appropriate engagement of the innate immune response during initial exposure to RSV G CX3C.

5.
Front Immunol ; 10: 2323, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31649663

RESUMEN

Respiratory Syncytial Virus (RSV) causes serious respiratory tract illness and substantial morbidity and some mortality in populations at the extremes of age, i.e., infants, young children, and the elderly. To date, RSV vaccine development has been unsuccessful, a feature linked to the lack of biomarkers available to assess the safety and efficacy of RSV vaccine candidates. We examined microRNAs (miR) as potential biomarkers for different types of RSV vaccine candidates. In this study, mice were vaccinated with a live attenuated RSV candidate that lacks the small hydrophobic (SH) and attachment (G) proteins (CP52), an RSV G protein microparticle (GA2-MP) vaccine, a formalin-inactivated RSV (FI-RSV) vaccine or were mock-treated. Several immunological endpoints and miR expression profiles were determined in mouse serum and bronchoalveolar lavage (BAL) following vaccine priming, boost, and RSV challenge. We identified miRs that were linked with immunological parameters of disease and protection. We show that miRs are potential biomarkers providing valuable insights for vaccine development.


Asunto(s)
Inmunización , Pulmón/inmunología , MicroARNs/inmunología , Vacunas contra Virus Sincitial Respiratorio/inmunología , Virus Sincitial Respiratorio Humano/inmunología , Animales , Biomarcadores , Femenino , Pulmón/patología , Ratones , Ratones Endogámicos BALB C , Infecciones por Virus Sincitial Respiratorio/inmunología , Infecciones por Virus Sincitial Respiratorio/prevención & control
6.
J Chem Neuroanat ; 98: 117-123, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31047946

RESUMEN

In the adult hippocampus new neurons are generated in the dentate gyrus from neural progenitor cells. Adult-born neurons integrate into the hippocampal circuitry and contribute to hippocampal function. PSD95 is a major postsynaptic scaffold protein that is crucial for morphological maturation and synaptic development of hippocampal neurons. Here we study the function of PSD95 in adult hippocampal neurogenesis by downregulating PSD95 expression in newborn cells using retroviral-mediated RNA interference. Retroviruses coding for a control shRNA or an shRNA targeting PSD95 (shPSD95) were stereotaxically injected into the dorsal dentate gyrus of 2-month-old C57BL/6 mice. PSD95 knockdown did not affect neuronal differentiation of newborn cells into neurons, or migration of newborn neurons into the granule cell layer. Morphological analysis revealed that newborn neurons expressing shPSD95 showed increased dendritic length and increased number of high-order dendrites. Concomitantly, dendrites from shPSD95-expressing newborn granule neurons showed a reduction in the density of dendritic spines. These results suggest that PSD95 is required for proper dendritic and spine maturation of adult-born neurons, but not for early stages of neurogenesis in the hippocampus.


Asunto(s)
Homólogo 4 de la Proteína Discs Large/metabolismo , Hipocampo/citología , Células-Madre Neurales/citología , Neurogénesis/fisiología , Neuronas/citología , Células Madre Adultas/citología , Células Madre Adultas/metabolismo , Animales , Diferenciación Celular/fisiología , Movimiento Celular/fisiología , Hipocampo/metabolismo , Ratones , Ratones Endogámicos C57BL , Células-Madre Neurales/metabolismo , Neuronas/metabolismo
7.
Sci Rep ; 9(1): 2676, 2019 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-30804469

RESUMEN

Influenza A(H3N2) viruses evade human immunity primarily by acquiring antigenic changes in the haemagglutinin (HA). HA receptor-binding features of contemporary A(H3N2) viruses hinder traditional antigenic characterization using haemagglutination inhibition and promote selection of HA mutants. Thus, alternative approaches are needed to reliably assess antigenic relatedness between circulating viruses and vaccines. We developed a high content imaging-based neutralization test (HINT) to reduce antigenic mischaracterization resulting from virus adaptation to cell culture. Ferret reference antisera were raised using clinical specimens containing viruses representing recent vaccine strains. Analysis of viruses circulating during 2011-2018 showed that gain of an N158-linked glycosylation in HA was a molecular determinant of antigenic distancing between A/Hong Kong/4801/2014-like (clade 3C.2a) and A/Texas/50/2012-like viruses (clade 3C.1), while multiple evolutionary HA F193S substitution were linked to antigenic distancing from A/Switzerland/97152963/2013-like (clade 3C.3a) and further antigenic distancing from A/Texas/50/2012-like viruses. Additionally, a few viruses carrying HA T135K and/or I192T showed reduced neutralization by A/Hong Kong/4801/2014-like antiserum. Notably, this technique elucidated the antigenic characteristics of clinical specimens, enabling direct characterization of viruses produced in vivo, and eliminating in vitro culture, which rapidly alters the genotype/phenotype. HINT is a valuable new antigenic analysis tool for vaccine strain selection.


Asunto(s)
Anticuerpos Antivirales/inmunología , Antígenos Virales/inmunología , Pruebas de Inhibición de Hemaglutinación/métodos , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Gripe Humana/inmunología , Pruebas de Neutralización/métodos , Animales , Hurones/inmunología , Hurones/virología , Glicosilación , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Humanos , Sueros Inmunes/inmunología , Subtipo H3N2 del Virus de la Influenza A/clasificación , Subtipo H3N2 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/fisiología , Vacunas contra la Influenza/inmunología , Gripe Humana/diagnóstico , Gripe Humana/virología , Filogenia
8.
J Virol ; 93(4)2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30541831

RESUMEN

Respiratory syncytial virus (RSV) is a leading cause of hospitalization of infants and young children, causing considerable respiratory disease and repeat infections that may lead to chronic respiratory conditions such as asthma, wheezing, and bronchitis. RSV causes ∼34 million new episodes of lower respiratory tract illness (LRTI) in children younger than 5 years of age, with >3 million hospitalizations due to severe RSV-associated LRTI. The standard of care is limited to symptomatic relief as there are no approved vaccines and few effective antiviral drugs; thus, a safe and efficacious RSV therapeutic is needed. Therapeutic targeting of host proteins hijacked by RSV to facilitate replication is a promising antiviral strategy as targeting the host reduces the likelihood of developing drug resistance. The nuclear export of the RSV M protein, mediated by the nuclear export protein exportin 1 (XPO1), is crucial for RSV assembly and budding. Inhibition of RSV M protein export by leptomycin B correlated with reduced RSV replication in vitro In this study, we evaluated the anti-RSV efficacy of Verdinexor (KPT-335), a small molecule designed to reversibly inhibit XPO1-mediated nuclear export. KPT-335 inhibited XPO1-mediated transport and reduced RSV replication in vitro KPT-335 was effective against RSV A and B strains and reduced viral replication following prophylactic or therapeutic administration. Inhibition of RSV replication by KPT-335 was due to a combined effect of reduced XPO1 expression, disruption of the nuclear export of RSV M protein, and inactivation of the NF-κB signaling pathway.IMPORTANCE RSV is an important cause of LRTI in infants and young children for which there are no suitable antiviral drugs offered. We evaluated the efficacy of KPT-335 as an anti-RSV drug and show that KPT-335 inhibits XPO1-mediated nuclear export, leading to nuclear accumulation of RSV M protein and reduction in RSV levels. KPT-335 treatment also resulted in inhibition of proinflammatory pathways, which has important implications for its effectiveness in vivo.


Asunto(s)
Acrilamidas/farmacología , Hidrazinas/farmacología , Virus Sincitiales Respiratorios/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Células A549 , Acrilamidas/metabolismo , Transporte Activo de Núcleo Celular/efectos de los fármacos , Animales , Antivirales/farmacología , Apoptosis/efectos de los fármacos , Línea Celular , Línea Celular Tumoral , Chlorocebus aethiops , Glicoproteínas/inmunología , Humanos , Hidrazinas/metabolismo , Carioferinas/efectos de los fármacos , Carioferinas/metabolismo , Receptores Citoplasmáticos y Nucleares/efectos de los fármacos , Receptores Citoplasmáticos y Nucleares/metabolismo , Infecciones por Virus Sincitial Respiratorio/tratamiento farmacológico , Virus Sincitial Respiratorio Humano/efectos de los fármacos , Células Vero , Proteína Exportina 1
9.
Antiviral Res ; 146: 12-20, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28802866

RESUMEN

Four World Health Organization (WHO) Collaborating Centres for Reference and Research on Influenza and one WHO Collaborating Centre for the Surveillance, Epidemiology and Control of Influenza (WHO CCs) assessed antiviral susceptibility of 14,330 influenza A and B viruses collected by WHO-recognized National Influenza Centres (NICs) between May 2015 and May 2016. Neuraminidase (NA) inhibition assay was used to determine 50% inhibitory concentration (IC50) data for NA inhibitors (NAIs) oseltamivir, zanamivir, peramivir and laninamivir. Furthermore, NA sequences from 13,484 influenza viruses were retrieved from public sequence databases and screened for amino acid substitutions (AAS) associated with reduced inhibition (RI) or highly reduced inhibition (HRI) by NAIs. Of the viruses tested by WHO CCs 93% were from three WHO regions: Western Pacific, the Americas and Europe. Approximately 0.8% (n = 113) exhibited either RI or HRI by at least one of four NAIs. As in previous seasons, the most common NA AAS was H275Y in A(H1N1)pdm09 viruses, which confers HRI by oseltamivir and peramivir. Two A(H1N1)pdm09 viruses carried a rare NA AAS, S247R, shown in this study to confer RI/HRI by the four NAIs. The overall frequency of A(H1N1)pdm09 viruses containing NA AAS associated with RI/HRI was approximately 1.8% (125/6915), which is slightly higher than in the previous 2014-15 season (0.5%). Three B/Victoria-lineage viruses contained a new AAS, NA H134N, which conferred HRI by zanamivir and laninamivir, and borderline HRI by peramivir. A single B/Victoria-lineage virus harboured NA G104E, which was associated with HRI by all four NAIs. The overall frequency of RI/HRI phenotype among type B viruses was approximately 0.6% (43/7677), which is lower than that in the previous season. Overall, the vast majority (>99%) of the viruses tested by WHO CCs were susceptible to all four NAIs, showing normal inhibition (NI). Hence, NAIs remain the recommended antivirals for treatment of influenza virus infections. Nevertheless, our data indicate that it is prudent to continue drug susceptibility monitoring using both NAI assay and sequence analysis.


Asunto(s)
Antivirales/farmacología , Inhibidores Enzimáticos/farmacología , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Virus de la Influenza B/efectos de los fármacos , Neuraminidasa/antagonistas & inhibidores , Ácidos Carbocíclicos , Sustitución de Aminoácidos , Antivirales/administración & dosificación , Antivirales/uso terapéutico , Ciclopentanos/farmacología , Farmacorresistencia Viral/genética , Inhibidores Enzimáticos/administración & dosificación , Inhibidores Enzimáticos/uso terapéutico , Monitoreo Epidemiológico , Salud Global , Guanidinas/farmacología , Humanos , Subtipo H1N1 del Virus de la Influenza A/enzimología , Subtipo H1N1 del Virus de la Influenza A/genética , Virus de la Influenza B/enzimología , Virus de la Influenza B/genética , Gripe Humana/tratamiento farmacológico , Gripe Humana/virología , Concentración 50 Inhibidora , Pruebas de Sensibilidad Microbiana , Oseltamivir/farmacología , Piranos , Estaciones del Año , Ácidos Siálicos , Organización Mundial de la Salud , Zanamivir/análogos & derivados
10.
Virus Res ; 240: 121-129, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28743463

RESUMEN

The infectious pancreatic necrosis virus (IPNV) is a salmonid pathogen that causes significant economic losses to the aquaculture industry. IPNV is a non-enveloped virus containing two uncapped and non-polyadenylated double strand RNA genomic segments, RNA-A and RNA-B. The viral protein Vpg is covalently attached to the 5' end of both segments. There is little knowledge about its viral cycle, particularly about the translation of the RNAs. Through experiments using mono and bicistronic reporters, in this work we show that the 120-nucleotide-long 5'-UTR of RNA-A contains an internal ribosome entry site (IRES) that functions efficiently both in vitro and in salmon cells. IRES activity is strongly dependent on temperature. Also, the IRES structure is confined to the 5'UTR and is not affected by the viral coding sequence. This is the first report of IRES activity in a fish virus and can give us tools to generate antivirals to attack the virus without affecting fish directly.


Asunto(s)
Infecciones por Birnaviridae/veterinaria , Enfermedades de los Peces/virología , Virus de la Necrosis Pancreática Infecciosa/genética , Biosíntesis de Proteínas , ARN Viral/genética , Regiones no Traducidas 5' , Animales , Infecciones por Birnaviridae/virología , Regulación Viral de la Expresión Génica , Virus de la Necrosis Pancreática Infecciosa/química , Virus de la Necrosis Pancreática Infecciosa/metabolismo , Sitios Internos de Entrada al Ribosoma , Conformación de Ácido Nucleico , ARN Mensajero/química , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Viral/química , ARN Viral/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , Salmo salar , Proteínas Virales/genética , Proteínas Virales/metabolismo
11.
Expert Rev Respir Med ; 11(8): 609-615, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28574729

RESUMEN

INTRODUCTION: Respiratory syncytial virus (RSV) is the major cause of lower respiratory tract infections (LRTI) in infants, the elderly, and the immunocompromised. Although the development of a RSV vaccine has been a priority for >50 years, there is still no vaccine available. Treatment of RSV LRTI has remained mostly supportive, i.e. hydration and oxygenation. Palivizumab and ribavirin are the only options currently available for prevention and treatment of RSV infection, but evidence suggests that they are not fully effective. This creates a significant unmet medical need for new therapeutics for prevention and treatment of RSV worldwide. Areas covered: This article reviews the antiviral drugs and monoclonal antibodies (mAb) for RSV that are in different stages of clinical development. Expert commentary: Over the last 10 years, new antiviral drugs and mAb have shown clinical promise against RSV, and may become available in the coming years. Although the RSV fusion protein has been the most popular target for inhibitors and mAbs, new approaches targeting other viral proteins have shown promising results. To overcome the emergence of RSV escape mutants, combination antiviral therapy may be explored in the future.


Asunto(s)
Antivirales/uso terapéutico , Infecciones por Virus Sincitial Respiratorio/tratamiento farmacológico , Virus Sincitial Respiratorio Humano/efectos de los fármacos , Anciano , Anciano de 80 o más Años , Humanos , Huésped Inmunocomprometido/efectos de los fármacos , Lactante , Infecciones por Virus Sincitial Respiratorio/inmunología , Virus Sincitial Respiratorio Humano/inmunología
12.
Vaccines (Basel) ; 4(4)2016 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-27918420

RESUMEN

Synthetic biodegradable microparticle and nanoparticle platform technology provides the opportunity to design particles varying in composition, size, shape and surface properties for application in vaccine development. The use of particle vaccine formulations allows improvement of antigen stability and immunogenicity while allowing targeted delivery and slow release. This technology has been design to develop novel vaccines against the respiratory syncytial virus (RSV), the leading cause of lower respiratory tract infection in infants. In the last decade, several nano- and micro-sized RSV vaccine candidates have been developed and tested in animal models showing promising results. This review provides an overview of recent advances in prophylactic particle vaccines for RSV and the multiple factors that can affect vaccine efficacy.

13.
Lab Anim (NY) ; 45(9): 333-7, 2016 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-27551803

RESUMEN

Cotton rats (Sigmodon hispidus) are widely used as animal models for infectious disease and immunological research. They emulate many aspects of human disease pathogenesis, and the introduction of cotton rat-specific immunological reagents, cell lines and sequencing of relevant genes have all helped to increase the popularity of this disease model. However, the use of cotton rats is problematic owing to their propensity for aggressive responses when handled, which can lead to escape, increased stress to the animals, and bites to staff. When cotton rats are co-housed, which is recommended under current social housing guidelines, these risks are increased. Here, we describe a method of isoflurane anesthesia induction in the home cage that reduces the risk of animal escape, minimizes stress during induction, and provides additional safety for staff. The method uses inexpensive materials that are widely available and can be easily disinfected. Our method also eliminates the need for expensive and cumbersome machines traditionally used with anesthetic chambers, and uses a minimal amount of inhalant anesthetic, saving resources and protecting staff from inhalation of leaked gas.


Asunto(s)
Anestesia/veterinaria , Anestésicos por Inhalación/administración & dosificación , Isoflurano/administración & dosificación , Sigmodontinae , Anestesia/métodos , Animales , Femenino
14.
Methods Mol Biol ; 1442: 1-12, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27464683

RESUMEN

Human respiratory syncytial virus (RSV) is understood to be a significant human pathogen in infants, young children, and the elderly and the immunocompromised. Over the last decade many important mechanisms contributing to RSV infection, replication, and disease pathogenesis have been revealed; however, there is still insufficient knowledge which has in part hampered vaccine development. Considerable information is accumulating regarding how RSV proteins modulate molecular signaling and immune responses to infection. Understanding how RSV interacts with its host is crucial to facilitate the development of safe and effective vaccines and therapeutic treatments.In this chapter, we provide a brief introduction into RSV replication, pathogenesis, and host immune response, and summarize the state of RSV vaccine and antiviral compounds in clinical stages of development. This chapter frames features of this book and the molecular methods used for understanding RSV interaction with the host.


Asunto(s)
Infecciones por Virus Sincitial Respiratorio/inmunología , Virus Sincitial Respiratorio Humano/fisiología , Replicación Viral , Anciano , Niño , Interacciones Huésped-Patógeno , Humanos , Inmunidad Innata , Huésped Inmunocomprometido , Lactante , Infecciones por Virus Sincitial Respiratorio/terapia , Infecciones por Virus Sincitial Respiratorio/virología , Virus Sincitial Respiratorio Humano/patogenicidad , Transducción de Señal , Proteínas Virales/inmunología , Vacunas Virales/uso terapéutico
15.
Methods Mol Biol ; 1442: 33-40, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27464685

RESUMEN

One of the most commonly used approaches for determining the quantity of infectious RSV particles in a given sample is the plaque assay. RSV infectious particles can be quantified by various direct and indirect methods. Here, we explain two simple methods for RSV titration: plaque assay and immunostaining assay.


Asunto(s)
Anticuerpos Antivirales/metabolismo , Virus Sincitiales Respiratorios/crecimiento & desarrollo , Ensayo de Placa Viral/métodos , Animales , Línea Celular Tumoral/virología , Chlorocebus aethiops , Humanos , Inmunoensayo , Virus Sincitiales Respiratorios/inmunología , Virus Sincitiales Respiratorios/patogenicidad , Células Vero/virología , Replicación Viral
16.
Methods Mol Biol ; 1442: 195-208, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27464696

RESUMEN

Several studies have shown that respiratory syncytial virus (RSV) can modulate the host innate immune response by dysregulation of host microRNAs (miRNAs) related to the antiviral response, a feature that also affects the memory immune response to RSV (Thornburg et al. MBio 3(6), 2012). miRNAs are small, endogenous, noncoding RNAs that function in posttranscriptional gene regulation. Here, we explain a compilation of methods for the purification, quantification, and characterization of miRNA expression profiles in biofluids, whole blood samples, and tissue samples obtained from in vivo studies. In addition, this chapter describes methods for the isolation of exosomal miRNA populations. Understanding alterations in miRNA expression profiles and identifying miRNA targets genes, and their contribution to the pathogenesis of RSV, may help elucidate novel mechanism of host-virus interaction (Rossi et al., Pediatr Pulmonol, 2015).


Asunto(s)
Perfilación de la Expresión Génica/métodos , MicroARNs/genética , Infecciones por Virus Sincitial Respiratorio/genética , Ascitis/genética , Exosomas/genética , Humanos , Inmunidad Innata , MicroARNs/análisis , MicroARNs/sangre , Infecciones por Virus Sincitial Respiratorio/sangre , Infecciones por Virus Sincitial Respiratorio/líquido cefalorraquídeo , Infecciones por Virus Sincitial Respiratorio/orina , Virus Sincitial Respiratorio Humano/patogenicidad
17.
Expert Rev Vaccines ; 15(2): 173-87, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26641318

RESUMEN

Respiratory syncytial virus (RSV) is the most important cause of lower respiratory tract infections causing bronchiolitis and some mortality in young children and the elderly. Despite decades of research there is no licensed RSV vaccine. Although significant advances have been made in understanding the immune factors responsible for inducing vaccine-enhanced disease in animal models, less information is available for humans. In this review, we discuss the different types of RSV vaccines and their target population, the need for establishing immune correlates for vaccine efficacy, and how the use of different animal models can help predict vaccine efficacy and clinical outcomes in humans.


Asunto(s)
Infecciones por Virus Sincitial Respiratorio/patología , Vacunas contra Virus Sincitial Respiratorio/inmunología , Vacunas contra Virus Sincitial Respiratorio/aislamiento & purificación , Virus Sincitiales Respiratorios/inmunología , Virus Sincitiales Respiratorios/patogenicidad , Animales , Biomarcadores , Bronquiolitis/epidemiología , Bronquiolitis/patología , Bronquiolitis/prevención & control , Bronquiolitis/virología , Modelos Animales de Enfermedad , Descubrimiento de Drogas/tendencias , Humanos , Infecciones por Virus Sincitial Respiratorio/epidemiología , Infecciones por Virus Sincitial Respiratorio/prevención & control
18.
J Gen Virol ; 97(3): 659-668, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26683768

RESUMEN

Vaccination with live-attenuated polio vaccine has been the primary reason for the drastic reduction of poliomyelitis worldwide. However, reversion of this attenuated poliovirus vaccine occasionally results in the emergence of vaccine-derived polioviruses that may cause poliomyelitis. Thus, the development of anti-poliovirus agents remains a priority for control and eradication of the disease. MicroRNAs (miRNAs) have been shown to regulate viral infection through targeting the viral genome or reducing host factors required for virus replication. However, the roles of miRNAs in poliovirus (PV) replication have not been fully elucidated. In this study, a library of 1200 miRNA mimics was used to identify miRNAs that govern PV replication. High-throughput screening revealed 29 miRNAs with antiviral properties against Sabin-2, which is one of the oral polio vaccine strains. In particular, miR-555 was found to have the most potent antiviral activity against three different oral polio attenuated vaccine strains tested. The results show that miR-555 reduced the level of heterogeneous nuclear ribonucleoprotein C1/C2 (hnRNP C) required for PV replication in the infected cells, which in turn resulted in reduction of PV positive-strand RNA synthesis and production of infectious progeny. These findings provide the first evidence for the role of miR-555 in PV replication and reveal that miR-555 could contribute to the development of antiviral therapeutic strategies against PV.


Asunto(s)
MicroARNs/inmunología , Poliomielitis/inmunología , Poliovirus/fisiología , Replicación Viral , Regulación Viral de la Expresión Génica , Ribonucleoproteínas Nucleares Heterogéneas/genética , Ribonucleoproteínas Nucleares Heterogéneas/inmunología , Interacciones Huésped-Patógeno , Humanos , MicroARNs/genética , Poliomielitis/genética , Poliomielitis/virología , Poliovirus/genética , ARN Viral/genética , ARN Viral/metabolismo
19.
Vaccines (Basel) ; 3(4): 829-49, 2015 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-26473935

RESUMEN

Respiratory syncytial virus (RSV) is the single most important cause of serious lower respiratory tract infections in young children; however no effective treatment or vaccine is currently available. Previous studies have shown that therapeutic treatment with a monoclonal antibody (clone 131-2G) specific to the RSV G glycoprotein CX3C motif, mediates virus clearance and decreases leukocyte trafficking to the lungs of RSV-infected mice. In this study, we show that vaccination with layer-by-layer nanoparticles (LbL-NP) carrying the G protein CX3C motif induces blocking antibodies that prevent the interaction of the RSV G protein with the fractalkine receptor (CX3CR1) and protect mice against RSV replication and disease pathogenesis. Peptides with mutations in the CX3C motif induced antibodies with diminished capacity to block G protein-CX3CR1 binding. Passive transfer of these anti-G protein antibodies to mice infected with RSV improved virus clearance and decreased immune cell trafficking to the lungs. These data suggest that vaccination with LbL-NP loaded with the CX3C motif of the RSV G protein can prevent manifestations of RSV disease by preventing the interaction between the G protein and CX3CR1 and recruitment of immune cells to the airways.

20.
J Virol ; 88(18): 10569-83, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24990999

RESUMEN

UNLABELLED: Respiratory syncytial virus (RSV) is the single most important cause of serious lower respiratory tract infections in young children, yet no highly effective treatment or vaccine is available. In the present study, we investigated the effect of prophylactic treatment with the intact and F(ab')2 forms of an anti-G protein monoclonal antibody (MAb), 131-2G, on the humoral and cellular adaptive immune responses to RSV rA2-line19F (r19F) challenge in BALB/c mice. The F(ab')2 form of 131-2G does not decrease virus replication, but intact 131-2G does. The serum specimens for antibodies and spleen cells for memory T cell responses to RSV antigens were analyzed at 30, 45, 75, and 95 days postinfection (p.i.) with or without prior treatment with 131-2G. The ratios of Th2 to Th1 antibody isotypes at each time p.i indicated that both forms of MAb 131-2G shifted the subclass response from a Th2 (IgG1 and IgG2b) to a Th1 (IgG2A) bias. The ratio of IgG1 to IgG2A antibody titer was 3-fold to 10-fold higher for untreated than MAb-treated mice. There was also some increase in IgG (22% ± 13% increase) and neutralization (32% increase) in antibodies with MAb 131-2G prophylaxis at 75 days p.i. Treatment with 131-2G significantly (P ≤ 0.001) decreased the percentage of interleukin-4 (IL-4)-positive CD4 and CD8 cells in RSV-stimulated spleen cells at all times p.i., while the percentage of interferon gamma (IFN-γ) T cells significantly (P ≤ 0.001) increased ≥ 75 days p.i. The shift from a Th2- to a Th1-biased T cell response in treated compared to untreated mice likely was directed by the much higher levels of T-box transcription factor (T-bet) (≥ 45% versus <10%) in CD4 and CD8 T cells and lower levels of Gata-3 (≤ 2% versus ≥ 6%) in CD4 T cells in peptide-stimulated, day 75 p.i. spleen cells. These data show that the RSV G protein affects both humoral and cellular adaptive immune responses, and induction of 131-2G-like antibodies might improve the safety and long-term efficacy of an RSV vaccine. IMPORTANCE: The data in this report suggest that the RSV G protein not only contributes to disease but also dampens the host immune response to infection. Both effects of G likely contribute to difficulties in achieving an effective vaccine. The ability of MAb 131-2G to block these effects of G suggests that inducing antibodies similar to 131-2G should prevent disease and enhance the adaptive immune response with later RSV infection. The fact that 131-2G binds to the 13-amino-acid region conserved among all strains and that flanking sequences are conserved within group A or group B strains simplifies the task of developing a vaccine to induce 131-2G-like antibodies. If our findings in mice apply to humans, then including the 131-2G binding region of G in a vaccine should improve its safety and efficacy.


Asunto(s)
Inmunidad Adaptativa , Anticuerpos Monoclonales/inmunología , Anticuerpos Antivirales/inmunología , Infecciones por Virus Sincitial Respiratorio/inmunología , Virus Sincitiales Respiratorios/inmunología , Células TH1/inmunología , Células Th2/inmunología , Proteínas del Envoltorio Viral/inmunología , Animales , Anticuerpos Monoclonales/administración & dosificación , Anticuerpos Antivirales/administración & dosificación , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Infecciones por Virus Sincitial Respiratorio/prevención & control , Infecciones por Virus Sincitial Respiratorio/virología , Virus Sincitiales Respiratorios/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA