Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 20
1.
J Fluoresc ; 34(2): 775-786, 2024 Mar.
Article En | MEDLINE | ID: mdl-37358757

Herein, we have prepared a 5,10,15,20-Tetrakis(4-hydroxyphenyl) porphyrin (P) which acts as a probe for selective and sensitive detection of Bi3+ ions. Probe P was obtained by reacting pyrrole with 4-hydroxyl benzaldehyde and characterized by NMR, IR, and ESI-MS. All photo-physical studies of P were tested in DMSO:H2O (8:2, v/v) media by spectrophotometry and spectrofluorometry respectively. The selectivity of P was tested with different metal ions in solution as well as in the solid phase, only Bi3+ showed red fluorescence quenching while with other metal ions, no such effect was observed. The Job's plot unveiled the 1:1 stoichiometric binding ratio of the probe with Bi3+ and anticipated association constant of 3.4 ×105 M-1, whereas the Stern-Volmer quenching constant was noticed to be 5.6 ×105 M-1. Probe P could detect Bi3+ down to 27 nM by spectrofluorometric. The binding mechanism of P with Bi3+ was well supported with NMR, mass, and DFT studies. Further, the P was applied for the quantitative determination of Bi3+ in various water samples and the biocompatibility of P was examined using neuro 2A (N2a) cells. Overall, probe P proves promising for the detection of Bi3+ in the semi-aqueous phase and it is the first report as a colorimetric and fluorogenic probe.

2.
J Fluoresc ; 2023 Aug 18.
Article En | MEDLINE | ID: mdl-37594587

A simple, efficient, and reversible fluorescent sensor probe, PBA (2,6-dimethyl pyrone barbituric acid conjugate), comprised of a pro-aromatic donor conjugated with a barbituric acid, was developed for the detection of highly toxic mercuric ions. The probe showed high selectivity and "Turn-On" fluorescence response towards Hg2+ among various metal cations such as Na+, Mg2+, Ca2+, Mn2+, Fe2+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Ba2+, Hg2+, and Pb2+, in both homogeneous and microheterogeneous micelle medium sodium dodecyl sulphate (SDS). The binding stoichiometry, limit of detection (LOD), and binding constant for the PBA-Hg complex were determined. The mechanism of binding was ascertained using the N,N'-dimethylbarbituric acid conjugate of 2,6-dimethylpyran (PDMBA), where no binding interaction by deprotonation is possible. In the presence of cysteamine hydrochloride and trifluoroacetic acid (TFA), the complexation of Hg2+ with PBA was demonstrated to be reversible, indicating its potential for the development of reusable sensors. Moreover, the practical applicability of PBA in monitoring Hg2+ in living cells was also evaluated.

3.
Carbohydr Polym ; 287: 119338, 2022 Jul 01.
Article En | MEDLINE | ID: mdl-35422297

Traditional cotton gauze derived from cellulose has many limitations in the processes of wound healing. To overcome these hassles, we used cellulose nanofibers (CNF) incorporated with curcumin for the fabrication of wound healing 3D porous aerogel. Cellulose nanofibers synthesized from plant waste are promising sustainable nanomaterials due to their biocompatibility and biodegradability. Ionic cross linking with sodium alginate was performed to maintain the mechanical strength. SEM results revealed highly porous architecture that effectively promoted wound healing, as a result of macro- and micro-porous architecture and curcumin. In-vitro drug release studies showed a slow and steady release pattern. The 3D porous nano bio aerogel with curcumin significantly promoted the migration of fibroblast cells and had excellent antimicrobial activity against pathogenic microorganisms. In-vivo studies showed angiogenesis without rejection or inflammation of the scaffold. From the observations, we can conclude that this novel 3D porous aerogel can be used to treat chronic wounds.


Curcumin , Nanofibers , Alginates , Cellulose/pharmacology , Curcumin/pharmacology , Porosity
4.
Am J Perinatol ; 39(15): 1688-1692, 2022 11.
Article En | MEDLINE | ID: mdl-33706395

OBJECTIVE: Neonates perceive pain which also has adverse long-term consequences. Newborns experience several painful procedures a day. Various methods of analgesia may be used but are underutilized. The SMART aim of this project was to increase the use of procedural analgesia from 11.5 to 75% in 6 months by using quality improvement principles. STUDY DESIGN: After a baseline audit, a root cause analysis was done. Based on this, a series of interventions were done as Plan-Do-Study-Act (PDSA) cycles. These included posters on analgesia, display of the pain protocol, orders for analgesia, a written test, small power point presentations on the importance of analgesia, and reminders on the trays used for procedures. At the end of each PDSA cycle, an audit was done to determine the proportion of times analgesia was used. Process indicators were also used when possible. Analysis was done by using the Chi-square test and the paired t-test. RESULTS: At baseline 11% of procedures were done after giving analgesia. This significantly improved to 40% at the end of the first PDSA, and 81% after third PDSA. This was sustained at 75% over the next 2 months. CONCLUSION: Procedural analgesia can improve and be sustained by using simple interventions. KEY POINTS: · Procedural pain in neonates can be decreased by the use of analgesia.. · However, most units do not utilize analgesia appropriately.. · This QI showed that simple interventions can optimize use of procedural analgesia..


Analgesia , Intensive Care Units, Neonatal , Infant, Newborn , Humans , Quality Improvement , Analgesia/adverse effects , Pain Management/methods , Pain/etiology , Pain/prevention & control
5.
Heliyon ; 7(7): e07451, 2021 Jul.
Article En | MEDLINE | ID: mdl-34286128

Advanced oxidation processes (AOPs) which involve the generation of highly reactive free radicals have been considered as a promising technology for the decontamination of water from chemical and bacterial pollutants. In this study, integration of two major AOPs viz., heterogeneous photocatalysis involving TiO2-reduced graphene oxide (T-RGO) nanocomposite and activated persulfate (PS) based oxidation was attempted to remove diclofenac (DCF), a frequently detected pharmaceutical contaminant in water. The enhanced visible light responsiveness of T-RGO would facilitate the use of direct sunlight as a benign and cost effective source of energy for the photocatalytic activation. By combining PS based oxidation process with T-RGO mediated photocatalysis, a DCF removal efficiency of more than 98% was achieved within 30 min. The effect of operating parameters like PS concentration and pH on DCF removal was assessed. Radical scavenging experiments indicated that apart from radical oxidation involving •OH and SO 4 · - radicals, a non-radical oxidation pathway was also taking place in the degradation. The antibacterial properties of the integrated system were also evaluated using Escherichia coli and Staphylococcus aureus as representative bacteria. The presence of PS in the photocatalytic reaction system improved the antibacterial activity of the composite against the two strains studied. Cytotoxicity of T-RGO nanocomposite was assessed using human macrophage cell lines and the results showed that the composite is biocompatible and nontoxic at the recommended dosage for water treatment in the present study.

6.
Nanomaterials (Basel) ; 11(4)2021 Mar 30.
Article En | MEDLINE | ID: mdl-33808385

The demand for metallic nanoparticle ornamented nanohybrid materials of graphene oxide (GO) finds copious recognition by virtue of its advanced high-tech applications. Far apart from the long-established synthesis protocols, a novel laser-induced generation of silver nanoparticles (Ag NPs) that are anchored onto the GO layers by a single-step green method named pulsed laser ablation has been exemplified in this work. The second and third harmonic wavelengths (532 nm and 355 nm) of an Nd:YAG pulsed laser is used for the production of Ag NPs from a bulk solid silver target ablated in an aqueous solution of GO to fabricate colloidal Ag-GO nanohybrid materials. UV-Vis absorption spectroscopy, Raman spectroscopy, and TEM validate the optical, structural, and morphological features of the hybrid nanomaterials. The results revealed that the laser-assisted in-situ deposition of Ag NPs on the few-layered GO surface improved its antibacterial properties, in which the hybrid nanostructure synthesized at a longer wavelength exhibited higher antibacterial action resistance to Escherichia coli (E. coli) than Staphylococcus aureus (S. aureus) bacteria. Moreover, nonlinear optical absorption (NLA) of Ag-GO nanohybrid was measured using the open aperture Z-scan technique. The Z-scan results signify the NLA properties of the Ag-GO hybrid material and have a large decline in transmittance of more than 60%, which can be employed as a promising optical limiting (OL) material.

7.
RSC Adv ; 11(15): 8450-8458, 2021 Feb 23.
Article En | MEDLINE | ID: mdl-35423392

Thin films of BiFeO3-NaNbO3 composites were fabricated in a PMMA matrix. XRD and HRTEM were used for structural investigations. The grain size and surface morphology of samples were analysed through HRTEM images. The self-cleaning property of any material accelerates its industrial applications. Hence, along with the optical limiting performance, the photocatalytic and antibacterial activity of BiFeO3-NaNbO3 composite samples were also studied. BiFeO3-NaNbO3 films fabricated in the PMMA matrix exhibit strong optical nonlinearity when excited by 5 ns laser pulses at 532 nm. The origin and magnitude of the observed optical nonlinearity were explained on the basis of the weak absorption saturation and strong excited state absorption. The photocatalytic performance of samples was analysed by dye degradation method using Methyl Orange dye. The dye degradation rate in the presence of the catalyst is heeded in a particular time interval, which exhibits the photocatalytic performance of the samples. The destruction of microbial organisms that are in contact with the material was contemplated, which could prove its antibacterial activity. The effect of the particle size on the photocatalytic activity was also investigated.

8.
Int J Biol Macromol ; 151: 806-813, 2020 May 15.
Article En | MEDLINE | ID: mdl-32084476

Zinc oxide (ZnO) encapsulated xanthan-based edible coating has been demonstrated in this paper for its main attribute of displaying superior anti-bacterial properties. The fabrication of microparticles was carried out through emulsion solvent evaporation route where ZnO particles get adsorbed onto xanthan gum matrix. Morphological analysis through TEM showed a flower like appearance for ZnO and core-shell morphology was observed for the hybrid system. The FT-IR analysis showed the successful encapsulation of ZnO into xanthan. To ensure the developed materials to be harmless for fruits and vegetables, the biocompatibility studies such as toxicity assay and blood compatibility studies were carried out. The results established that the hybrid microparticles were compatible to the blood cells and featured excellent cell viability upon treatment with human fibroblast cells. Finally a significant finding of this biocompatible hybrid coating on apples and tomatoes was the negligible weight loss for both in comparison to their uncoated fruits and vegetables under ambient conditions.


Biocompatible Materials/chemistry , Coated Materials, Biocompatible/chemistry , Polysaccharides, Bacterial/chemistry , Zinc Oxide/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Food Preservation , Humans , Microbial Sensitivity Tests , Nanostructures/chemistry , Surface Properties
9.
RSC Adv ; 10(62): 37928-37937, 2020 Oct 12.
Article En | MEDLINE | ID: mdl-35515181

Strategies to improve the acceptance of scaffolds by the body is crucial in tissue engineering (TE) which requires tailoring of the pore structure, mechanical properties and surface characteristics of the scaffolds. In the current study we used a 3-dimensional (3D) printing technique to tailor the pore structure and mechanical properties of (i) nanocellulose based hydrogel scaffolds for soft tissue engineering and (ii) poly lactic acid (PLA) based scaffolds for hard tissue engineering in combination with surface treatment by protein conjugation for tuning the scaffold bioactivity. Dopamine coating of the scaffolds enhanced the hydrophilicity and their capability to bind bioactive molecules such as fibroblast growth factor (FGF-18) for soft TE scaffolds and arginyl glycyl aspartic acid (RGD) peptide for hard TE scaffolds, which was confirmed using MALDI-TOFs. This functionalization approach enhanced the performance of the scaffolds and provided antimicrobial activity indicating that these scaffolds can be used for cartilage or bone regeneration applications. Blood compatibility studies revealed that both the materials were compatible with human red blood cells. Significant enhancement of cell attachment and proliferation confirmed the bioactivity of growth factor functionalized 3D printed soft and hard tissues. This approach of combining 3D printing with biological tuning of the interface is expected to significantly advance the development of biomedical materials related to soft and hard tissue engineering.

10.
RSC Adv ; 10(61): 37409-37418, 2020 Oct 07.
Article En | MEDLINE | ID: mdl-35521276

Trace determination of radioactive waste, especially Ce3+, by electrochemical methods has rarely been attempted. Ce3+ is (i) a fluorescence quencher, (ii) an antiferromagnet, and (iii) a superconductor, and it has been incorporated into fast scintillators, LED phosphors, and fluorescent lamps. Although Ce3+ has been utilized in many industries due to its specific properties, it causes severe health problems to human beings because of its toxicity. Nanomaterials with fascinating electrical properties can play a vital role in the fabrication of a sensor device to detect the analyte of interest. In the present study, surfactant-free 1,8-diaminonaphthalene (DAN)-functionalized graphene quantum dots (DAN-GQDs) with nanobud (NB) morphology were utilized for the determination of Ce3+ through electrochemical studies. The working electrode, graphene nanobud (GNB)-modified-carbon felt (CF), was developed by a simple drop-coating method for the sensitive detection of Ce3+ in acetate buffer solution (ABS, pH 4.0 ± 0.05) at a scan rate of 50 mV s-1 using cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques. CV and DPV studies validated the existence of distinctive peaks at approximately +0.20 and +0.93 V (vs. SCE), respectively, with a limit of detection of approximately 2.60 µM. Furthermore, electrochemical studies revealed that the GNB-modified-CF electrode was (i) stable even after fifteen cycles, (ii) reproducible, (iii) selective towards Ce3+, (iv) strongly pH-dependent, and (v) favored Ce3+ sensing only at pH 4.0 ± 0.05. Impedance spectroscopy results indicated that the GNB-modified-CF electrode was more conductive (1.38 × 10-4 S m-1) and exhibited more rapid electron transfer than bare CF, which agrees with the attained Randles equivalent circuit. Microscopy (AFM, FE-SEM, and HR-TEM), spectroscopy (XPS and Raman), XRD, and energy-dispersive X-ray (EDX) analyses of the GNB-modified-CF electrode confirmed the adsorption of Ce3+ onto the electrode surface and the size of the electrode material. Ce3+ nanobuds increased from 35-40 to 50-55 nm without changing their morphology. The obtained results provide an insight into the determination of Ce3+ to develop an electrochemical device with low sensitivity.

11.
Environ Sci Pollut Res Int ; 27(25): 30907-30917, 2020 Sep.
Article En | MEDLINE | ID: mdl-31376128

Zinc oxide nanoparticles are widely used in some domains (cosmetics, pharmaceuticals optical devices, and agricultural field) due to their physical, optical, and antimicrobial properties. However, the release of ZnO-NPs into the environment may affect organisms like fish with potential consequences for human health. Histological approaches of the acute effects of these materials on fish are scarce; thus, the present study aimed to investigate the potential toxic effects of acute exposure to ZnO particles in marine environments, by assessing histological changes in the gills, liver, spleen, and muscle of gilthead seabream (Sparus aurata) juveniles. Thus, fish were exposed for 96 h, via water, to 1 mg L-1 of ionic zinc and zinc oxide particles (1.1, 1.2, and 1.4 µm of size). Histological examination revealed gills as the most affected organ, followed by liver, muscle, and spleen. In the gills, histopathological changes included hyperplasia of epithelial cells, fusion of the secondary lamellae, and lifting of the lamellar epithelium with edema. In the liver, lipid vacuolation of several degrees, necrosis of hepatic and pancreatic tissues, blood congestion in sinusoids and hepatoportal vessels, presence of cellular infiltrate, and melano-macrophages diffusion was found. Muscle showed degeneration, atrophy, thickening and necrosis of muscle fibers with edema between them, and presence of melano-macrophages in the muscle layer. Spleen was the less damaged organ, displaying congested blood, white pulp increase/rupture, and bigger and darker melano-macrophage aggregates in the splenic stroma. These results underline that the size of particles plays a determinant role in their potential pernicious effects. A short-term exposure caused major histopathological changes in relevant organs of S. aurata juveniles, possibly affecting their function.


Sea Bream , Water Pollutants, Chemical , Zinc Oxide , Adolescent , Animals , Biomarkers , Gills , Humans , Liver
12.
Phys Chem Chem Phys ; 21(24): 13099-13108, 2019 Jun 28.
Article En | MEDLINE | ID: mdl-31169276

With the aim of designing an efficient procedure for producing biocompatible drug delivery systems based on nanoparticle carriers for in situ controlled antibiotic release, we have defined a novel computational approach resorting to a reactive force field capable of realistically describing hybrid systems. The modeling procedure was focused on well-known components, namely gold nanoparticles, citrate, chitosan and gentamicin, and the experiments tuned on purpose. On the one hand, gold nanoparticles were synthesized, fuctionalized with chitosan, loaded with gentamicin and characterized by means of transmission electron microscopy (TEM), scanning electron microscopy (SEM), dynamic light scattering (DLS), UV-visible (UV-vis) spectroscopy, and Fourier transform infrared spectroscopy (FTIR). On the other hand, an effective model of a functionalized gold nanoparticle was created and its structure and dynamics were explored by classical reactive molecular dynamics simulations in solution based on the ReaxFF atomistic description. The structure, dynamics and drug release were reproduced realistically disclosing the motion of all the molecular components, their adsorption on the metal support, desorption, intermolecular interactions and self-assembly. The system size was very close to the experimental conditions and all the calculations could efficiently identify the most probable binding modes, the locations of the adsorbed molecules, the characteristic arrangements of the chains and the effects due to the surrounding environment. The role played by the substrate and water molecules in the releasing process was described in detail. In line with the literature it was found that the antibiotic activity was preserved and the drug release from the carrier could be tuned by changing the chitosan/getamicin weight ratio and the deposition pattern of the adsorbed layers.


Anti-Bacterial Agents/chemistry , Chitosan/chemistry , Drug Carriers/chemistry , Gentamicins/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Molecular Dynamics Simulation , Anti-Bacterial Agents/pharmacology , Cell Line , Cell Survival/drug effects , Drug Liberation , Epithelial Cells/cytology , Epithelial Cells/drug effects , Escherichia coli/drug effects , Gentamicins/pharmacology , Humans , Polyvinyl Alcohol/chemistry , Staphylococcus aureus/drug effects
13.
ACS Appl Bio Mater ; 2(11): 4681-4686, 2019 Nov 18.
Article En | MEDLINE | ID: mdl-35021465

Control measures against antimicrobial resistant bacterial pathogens are important challenges in our daily life. In this study, we discuss the sensitivity and resistance of four bacterial pathogens, Vibrio alginolyticus, Escherichia coli, Staphylococcus aureus, and Bacillus subtilis, to silver-silica hybrid nanoparticles. Successively, by combining with an efflux pump blocking agent Verapamil, we find that these hybrid nanoparticles induce complete mortality to even the most resistive S. aureus. The above pathogens are selected from a pool of 100 bacterial strains resistant to silver nitrate. While S. aureus shows increased resistance to the nanoparticles, the cell wall integrity and genetic stability of V. alginolyticus and E. coli are compromised in the presence of the hybrid nanoparticles. These studies suggest that the antimicrobial properties of the nanoparticles against Gram-negative pathogens originate from increased oxidative stress, which is confirmed by the blocking of reactive oxygen species (ROS) using scavengers such as ascorbic acid and observing DNA damage. The antimicrobial property of the nanoparticle when combined with its nontoxic nature to mammalian cells makes it a promising agent for controlling drug-resistant Gram-negative pathogens.

14.
Mater Sci Eng C Mater Biol Appl ; 95: 43-48, 2019 Feb 01.
Article En | MEDLINE | ID: mdl-30573268

We herein report the synthesis of MFe2O4 (M = Mn, Mg)/reduced graphene oxide (MFe2O4/RGO) through a simple and novel pressure cooker assisted solvothermal method. The structure and morphology of the as-prepared materials were investigated using X-ray diffraction (XRD), transmission electron microscopic (TEM) and X-ray photoelectron spectroscopy (XPS). The antimicrobial study revealed that the as-synthesized materials displayed good antibacterial effect against E. coli and S. aureus bacteria. In addition, due to the small particle size of MnFe2O4, MnFe2O4/RGO nanocomposite show better antibacterial activity than MgFe2O4/RGO nanocomposite.


Anti-Infective Agents/chemistry , Graphite/chemistry , Nanocomposites/chemistry , Anti-Infective Agents/pharmacology , Escherichia coli/drug effects , Escherichia coli/ultrastructure , Microscopy, Electron, Transmission , Nanocomposites/ultrastructure , Staphylococcus aureus/drug effects , Staphylococcus aureus/ultrastructure , X-Ray Diffraction
15.
Nanotechnology ; 29(30): 305704, 2018 Jul 27.
Article En | MEDLINE | ID: mdl-29726837

Antimicrobial, antibiofilm adherent, fracture resistant nano zinc oxide (ZnO NP) formulations based on poly methyl methacrylate (PMMA) matrix were developed using a facile ex situ compression moulding technique. These formulations demonstrated potent, long-term biofilm-resisting effects against Candida albicans (9000 CFU to 1000 CFU) and Streptococcus mutans. Proposed mechanism of biofilm resistance was the release of metallic ions/metal oxide by 'particle-corrosion'. MTT and cellular proliferation assays confirmed both qualitatively and quantitatively equal human skin fibroblast cell line proliferations (approximately 75%) on both PMMA/ZnO formulation and neat PMMA. Mechanical performance was evaluated over a range of filler loading, and theoretical models derived from Einstein, Guth, Thomas and Quemade were chosen to predict the modulus of the nanoformulations. All the models gave better fitting at lower filler content, which could be due to restricted mobility of the polymer chains by the constrained zone/interfacial rigid amorphous zone and also due to stress absorption by the highly energized NPs. Fracture mechanics were clearly described based on substantial experimental evidence surrounding crack prevention in the initial zones of fracture. Filler-polymer interactions at the morphological and structural levels were elucidated through FTIR, XRD, SEM, TEM and AFM analyses. Major clinical challenges in cancer patient rehabilitation and routine denture therapy are frequent breakage of the prostheses and microbial colonization on the prostheses/tissues. In the present study, we succeeded in developing an antimicrobial, mechanically improved fracture resistant, biocompatible nanoformulation in a facile manner without the bio-toxic effects of surface modifiers/functionalization. This PMMA/ZnO nanoformulation could serve as a cost effective breakthrough biomaterial in the field of prosthetic rehabilitation and local drug delivery scaffolds for abused tissues.


Biofilms/drug effects , Nanoparticles/chemistry , Polymethyl Methacrylate/pharmacology , Zinc Oxide/pharmacology , Candida albicans/drug effects , Cell Proliferation/drug effects , Hardness , Humans , Nanoparticles/ultrastructure , Polymethyl Methacrylate/chemistry , Sonication , Spectroscopy, Fourier Transform Infrared , Streptococcus mutans/drug effects , Streptococcus mutans/physiology , Tensile Strength
16.
Int J Biol Macromol ; 103: 1265-1275, 2017 Oct.
Article En | MEDLINE | ID: mdl-28559185

Lipid-polymer hybrid nanoparticles have recently gathered much attention as nanoplatforms for drug delivery applications due to their unique structural properties. In this study zidovudine (AZT) loaded hybrid nanoparticles of alginate (ALG) and stearic acid- poly ethylene glycol (SA-PEG) were synthesized. The structural characterization of drug loaded hybrid nanoparticles were studied using FT-IR spectroscopy, DLS and TEM analysis. These hybrid nanoparticles showed dendritic morphology and it can be used as an efficient carrier for zidovudine. In this drug loaded hybrid system of Alginate -Stearicacid/Poly (ethyleneglycol) Nanoparticles (ASNPs), AZT and alginate form the core wherein SA-PEG forms the external shell. We observed a dendritic morphology with internal voids and channels formed by the core molecule and the external shell forms the closed pack surface groups. The optimized formulation achieved a sub micron size of 407.67±19.18nm with drug encapsulation of 83.18±1.22%, and surface potential of -42.53mV, and has significant stability for six months. Haemolysis and aggregation studies revealed that there were no lysis and aggregation in WBC, RBC and platelets. In-vitro cytotoxicity and cellular uptake of the nanoparticles in Glioma, Neuro2a and Hela cells showed that ASNPs are non toxic. The results indicate that the synthesized hybrid nanoparticles represent a potential carrier for zidovudine, thus possibly increasing zidovudine's efficiency as an anti-HIV drug.


Alginates/chemistry , Antiviral Agents/chemistry , Dendrimers/chemistry , Drug Carriers/chemistry , Nanoparticles/chemistry , Zidovudine/chemistry , Cell Line, Tumor , Cell Survival/drug effects , Drug Carriers/pharmacology , Drug Liberation , Glucuronic Acid/chemistry , Hexuronic Acids/chemistry , Humans , Polyethylene Glycols/chemistry
17.
Mater Sci Eng C Mater Biol Appl ; 65: 345-53, 2016 Aug 01.
Article En | MEDLINE | ID: mdl-27157761

The development of functionalized graphene materials concerning health and environmental aspects via green approaches is currently the most recent topic in the field of nanoscience and nanotechnology. Herein, we report the green reduction of graphene oxide (GO) to reduced graphene oxide (RGO) using grape seed extract (GSE). Structural properties of the prepared RGO were investigated using Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, thermogravimetric analysis (TGA), UV-Visible spectroscopy and X-ray diffraction analysis. These all characterization techniques clearly revealed that the RGO has been successfully prepared. Moreover, the average thickness (4.2nm) of RGO layers was also confirmed by transmission electron microscopy (TEM). Optical properties such as band gap and photoluminescence of the synthesized RGO were evaluated. The band gap of RGO was found to be 3.84eV and it showed emission in the visible region. Efficient antimicrobial activity against Escherichia coli and Staphylococcus aureus was observed with 4µgml(-1) & 5µgml(-1) of RGO and also the cell wall damage of these strains has been proved by atomic force microscopy (AFM). The in vitro study of RGO (500µg) disclosed the effective anti-proliferative activity (88%) against HCT-116 cell lines.


Grape Seed Extract/chemistry , Graphite/chemistry , Cell Proliferation/drug effects , Cell Survival/drug effects , Erythrocytes/cytology , Erythrocytes/drug effects , Escherichia coli/drug effects , Graphite/pharmacology , HCT116 Cells , Hemolysis/drug effects , Humans , Microscopy, Atomic Force , Microscopy, Electron, Transmission , Oxides/chemistry , Spectroscopy, Fourier Transform Infrared , Spectrum Analysis, Raman , Staphylococcus aureus/drug effects , X-Ray Diffraction
18.
Environ Pollut ; 159(10): 2775-80, 2011 Oct.
Article En | MEDLINE | ID: mdl-21665339

Over the past three decades heavy metal pollution has increased substantially in Cochin estuary, south west coast of India. Here we studied the distribution, diversity and enzyme expression profile of culturable microbial population along a pollution gradient. The distribution of resistance against 5 mM concentration of Zn, Co, Ni and Cu was observed among 90-100% of bacterial isolates retrieved from highly polluted Eloor, whereas it was less than 40% in Vypin and Munambam. Similarly, there was a difference in the distribution and diversity of bacterial phyla with predominance of Proteobacteria in Eloor and Firmicutes in Munambam and Vypin. We observed that 75-100% of the organisms retrieved from Eloor had low levels of expression for hydrolytic enzyme. In conclusion, the heavy metal pollution in Cochin estuary brought in reduction/adaptation in the distribution, diversity and enzyme expression profile of bacteria, which may impart adverse impacts on ecosystem functioning.


Adaptation, Physiological/drug effects , Bacteria/drug effects , Metals, Heavy/toxicity , Water Microbiology , Water Pollutants, Chemical/toxicity , Bacteria/classification , Bacteria/enzymology , Bacterial Physiological Phenomena/drug effects , Biodiversity , Ecosystem , Fresh Water/chemistry , Geologic Sediments/chemistry , Heterotrophic Processes , India , Metals, Heavy/analysis , Seawater/chemistry , Water Pollutants, Chemical/analysis
19.
Braz. j. microbiol ; 40(2): 269-275, Apr.-June 2009. ilus, tab
Article En | LILACS | ID: lil-520217

Bacillus species constitute a diverse group of bacteria widely distributed in soil and the aquatic environment. In this study, Bacillus strains isolated from the coastal environment of Cochin, India were identified by detailed conventional biochemical methods, fatty acid methyl ester (FAME) analysis and partial 16S rDNA sequencing. Analysis of the data revealed that Bacillus pumilus was the most predominant species in the region under study followed by B. cereus and B. sphaericus. The B. pumilus isolates were further characterized by arbitrarily primed PCR (AP-PCR), antibiotic sensitivity profiling and PCR screening for known toxin genes associated with Bacillus spp. All B. pumilus isolates were biochemically identical, exhibited high protease and lipase activity and uniformly sensitive to antibiotics tested in this study. One strain of B. pumilus harboured cereulide synthetase gene cesB of B. cereus which was indistinguishable from rest of the isolates biochemically and by AP-PCR. This study reports, for the first time, the presence of the emetic toxin gene cesB in B. pumilus.


As espécies de Bacillus constituem um grupo diversificado de bactérias amplamente distribuídas no solo e no ambiente aquático. Neste estudo, cepas de Bacillus isoladas do ambiente costeiro de Cochin, Índia, foram identificadas através de métodos bioquímicos convencionais, análise de ésteres metílicos de ácidos graxos (FAME) e sequenciamento de 16S rDNA. A análise dos dados revelou que Bacillus pumilus foi a espécie predominante na região estudada, seguido de B. cereus e B. sphaericus. Os isolados de B. pumilus foram caracterizados através da reação em cadeia da polimerase com primers arbitrários (AP-PCR), perfil de sensibilidade a antibióticos e triagem por PCR de genes de toxinas associadas com Bacillus spp. Todos os isolados de B. pumilus foram bioquimicamente idênticos, apresentaram elevada atividade de protease e lipase e foram uniformemente sensíveis aos antibióticos estudados. Um dos isolados de B. pumilus apresentou o gene cesB de B. cereus, que não foinão distinguível dos demais isolados por testes bioquímicos nem por AP-PCR. Este é o primeiro relato da presença do gene cesB da toxina eméticaem B. pumilus.


Aspergillus flavus/genetics , Bacillus/isolation & purification , In Vitro Techniques , Lipase/genetics , Peptide Hydrolases/genetics , Pimenta/genetics , Polymerase Chain Reaction , Base Sequence , Fatty Acids/analysis , Aquatic Environment , Methods , Soil , Methods
20.
Braz J Microbiol ; 40(2): 269-75, 2009 Apr.
Article En | MEDLINE | ID: mdl-24031357

Bacillus species constitute a diverse group of bacteria widely distributed in soil and the aquatic environment. In this study, Bacillus strains isolated from the coastal environment of Cochin, India were identified by detailed conventional biochemical methods, fatty acid methyl ester (FAME) analysis and partial 16S rDNA sequencing. Analysis of the data revealed that Bacillus pumilus was the most predominant species in the region under study followed by B. cereus and B. sphaericus. The B. pumilus isolates were further characterized by arbitrarily primed PCR (AP-PCR), antibiotic sensitivity profiling and PCR screening for known toxin genes associated with Bacillus spp. All B. pumilus isolates were biochemically identical, exhibited high protease and lipase activity and uniformly sensitive to antibiotics tested in this study. One strain of B. pumilus harboured cereulide synthetase gene cesB of B. cereus which was indistinguishable from rest of the isolates biochemically and by AP-PCR. This study reports, for the first time, the presence of the emetic toxin gene cesB in B. pumilus.

...