Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 57(30): 11185-11194, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37460108

RESUMEN

In this study, Np(V) retention on Illite du Puy (IdP) was investigated since it is essential for understanding the migration behavior of Np in argillaceous environments. The presence of structural Fe(III) and Fe(II) in IdP was confirmed by Fe K-edge X-ray absorption near-edge structure (XANES) and 57Fe Mössbauer spectroscopy. In batch sorption experiments, a higher Np sorption affinity to IdP was found than to Wyoming smectite or iron-free synthetic montmorillonite. An increase of the relative Np(IV) ratio sorbed onto IdP with decreasing pH was observed by solvent extraction (up to (24 ± 2)% at pH 5, c0(Np) = 10-6 mol/L). Furthermore, up to (33 ± 5)% Np(IV) could be detected in IdP diffusion samples at pH 5. Respective Np M5-edge high-energy resolution (HR-) XANES spectra suggested the presence of Np(IV/V) mixtures and weakened axial bond covalency of the NpO2+ species sorbed onto IdP. Np L3-edge extended X-ray absorption fine structure (EXAFS) analysis showed that significant fractions of Np were coordinated to Fe─O entities at pH 9. This highlights the potential role of Fe(II/III) clay edge sites as a strong Np(V) surface complex partner and points to the partial reduction of sorbed Np(V) to Np(IV) via structural Fe(II).


Asunto(s)
Compuestos Férricos , Minerales , Minerales/química , Bentonita/química , Compuestos Ferrosos/química
2.
Anal Chim Acta ; 1202: 339636, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35341521

RESUMEN

The recently emerged actinide (An) M4,5-edge high-energy resolution X-ray absorption near-edge structure (HR-XANES) technique has proven to be very powerful for oxidation state studies of actinides. In this work, for the first time, Np M5-edge HR-XANES was applied to study Np sorption on illite. By improving the experimental conditions, notably by operation of the spectrometer under He atmosphere, it was possible to measure Np M5-edge HR-XANES spectra of a sample with ≈ 1 µg Np/g illite (1 ppm). This is 30-2000 times lower than Np loadings on mineral surfaces usually investigated by X-ray absorption spectroscopy. A newly designed cryogenic configuration enabled sample temperatures of 141.2 ± 1.5 K and successfully prevented beam-induced changes of the Np oxidation state. The described approach paves the way for the examination of coupled redox/solid-liquid interface reactions of actinide ions via An M4,5-edge HR-XANES spectroscopy at low metal ion concentrations, which are of specific relevance for contaminated sites and nuclear waste disposal studies.


Asunto(s)
Espectroscopía de Absorción de Rayos X , Arcilla , Oxidación-Reducción , Temperatura , Espectroscopía de Absorción de Rayos X/métodos , Rayos X
3.
Environ Sci Technol ; 53(21): 12238-12246, 2019 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-31589027

RESUMEN

The migration of low levels of plutonium has been observed at the Nevada National Security Site (NNSS) and attributed to colloids. To better understand the mechanism(s) of colloid-facilitated transport at this site, we performed flow cell desorption experiments with mineral colloid suspensions produced by hydrothermal alteration of NNSS nuclear melt glass, residual material left behind from nuclear testing. Three different colloid suspensions were used: (1) colloidal material from hydrothermal alteration of nuclear melt glass at 140 °C; (2) at 200 °C; and (3) plutonium sorbed to SWy-1 montmorillonite at room temperature. The 140 °C sample contained only montmorillonite, while zeolite and other phases were present in the 200 °C sample. Overall, more plutonium was desorbed from the 140 °C colloids (ca. 9-16%) than from the 200 °C colloids (ca. 4-8%). Furthermore, at the end of the 4.5 day flow cell experiments, the desorption rates for the 140 °C colloids and the Pu-montmorillonite colloids were similar while the desorption rates from the 200 °C colloids were up to an order of magnitude lower. We posit that the formation of zeolites and clays hydrothermally altered at 200 °C may lead to a more stable association of plutonium with colloids, resulting in lower desorption rates. This may give rise to more extensive colloid-facilitated transport and help explain why trace levels of plutonium are found downgradient from their original source decades after a nuclear detonation. Interestingly, in the case of cesium (a co-contaminant of plutonium), no difference was observed between the 140 and 200 °C colloids. This reflects intrinsic differences between cesium and plutonium sorption/desorption behavior (charge, cation size) and suggests that the Cs sorption mechanism (cation exchange) is not similarly affected by colloid formation temperature.


Asunto(s)
Plutonio , Bentonita , Coloides , Nevada , Medidas de Seguridad
4.
Environ Sci Technol ; 53(13): 7363-7370, 2019 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-31192587

RESUMEN

Approximately 2.8 t of plutonium (Pu) has been deposited in the Nevada National Security Site (NNSS) subsurface as a result of underground nuclear testing. Most of this Pu is sequestered in nuclear melt glass. However, Pu migration has been observed and attributed to colloid facilitated transport. To identify the mechanisms controlling Pu mobilization, long-term (∼3 year) laboratory nuclear melt glass alteration experiments were performed at 25 to 200 °C to mimic hydrothermal conditions in the vicinity of underground nuclear tests. The clay and zeolite colloids produced in these experiments are similar to those identified in NNSS groundwater. At 200 °C, maximum Pu and colloid concentrations of 30 Bq/L and 150 mg/L, respectively, were observed. However, much lower Pu and colloid concentrations were observed at 25 and 80 °C. These data suggest that Pu concentrations above the drinking water Maximum Contaminant Levels (0.56 Bq/L) may exist during early hydrothermal conditions in the vicinity of underground nuclear tests. However, formation of colloid-associated Pu will tend to decrease with time as nuclear test cavity temperatures decrease. Furthermore, median colloid concentrations in NNSS groundwater (1.8 mg/L) suggest that the high colloid and Pu concentrations observed in our 140 and 200 °C experiments are unlikely to persist in downgradient NNSS groundwater. While our experiments did not span all groundwater and nuclear melt glass conditions that may be present at the NNSS, our results are consistent with the documented low Pu concentrations in NNSS groundwater.


Asunto(s)
Plutonio , Contaminantes Radiactivos del Agua , Coloides , Nevada , Medidas de Seguridad
5.
Sci Total Environ ; 575: 207-218, 2017 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-27741456

RESUMEN

As a contribution to the safety assessment of nuclear waste repositories, U(VI) diffusion through the potential buffer material MX-80 bentonite was investigated at three clay dry densities over six years. Synthetic MX-80 model pore water was used as background electrolyte. Speciation calculations showed that Ca2UO2(CO3)3(aq) was the main U(VI) species. The in- and out-diffusion of U(VI) was investigated separately. U(VI) diffused about 3mm, 1.5mm, and 1mm into the clay plug at ρ=1.3, 1.6, and 1.9g/cm3, respectively. No through-diffusion of the U(VI) tracer was observed. However, leaching of natural uranium contained in the clay occurred and uranium was detected in all receiving reservoirs. As expected, the effective and apparent diffusion coefficients, De and Da, decreased with increasing dry density. The Da values for the out-diffusion of natural U(VI) were in good agreement with previously determined values. Surprisingly, Da values for the in-diffusion of U(VI) were about two orders of magnitude lower than values obtained in short-term in-diffusion experiments reported in the literature. Some potential reasons for this behavior that were evaluated are changes of the U(VI) speciation within the clay (precipitation, reduction) or changes of the clay porosity and pore connectivity with time. By applying Archie's law and the extended Archie's law, it was estimated that a significantly smaller effective porosity must be present for the long-term in-diffusion of U(VI). The results suggest that long-term studies of key transport phenomena may reveal additional processes that can directly impact long-term repository safety assessments.

6.
Phys Chem Chem Phys ; 17(45): 30577-89, 2015 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-26524292

RESUMEN

Compacted clays are considered as excellent candidates for barriers to radionuclide transport in future repositories for nuclear waste due to their very low hydraulic permeability. Diffusion is the dominant transport mechanism, controlled by a nano-scale pore system. Assessment of the clays' long-term containment function requires adequate modelling of such pore systems and their evolution. Existing characterisation techniques do not provide complete pore space information for effective modelling, such as pore and throat size distributions and connectivity. Special network models for reactive transport are proposed here using the complimentary character of the pore space and the solid phase. This balances the insufficient characterisation information and provides the means for future mechanical-physical-chemical coupling. The anisotropy and heterogeneity of clays is represented using different length parameters and percentage of pores in different directions. Resulting networks are described as mathematical graphs with efficient discrete calculus formulation of transport. Opalinus Clay (OPA) is chosen as an example. Experimental data for the tritiated water (HTO) and U(vi) diffusion through OPA are presented. Calculated diffusion coefficients of HTO and uranium species are within the ranges of the experimentally determined data in different clay directions. This verifies the proposed pore network model and validates that uranium complexes are diffusing as neutral species in OPA. In the case of U(vi) diffusion the method is extended to account for sorption and convection. Rather than changing pore radii by coarse grained mathematical formula, physical sorption is simulated in each pore, which is more accurate and realistic.


Asunto(s)
Silicatos de Aluminio/química , Contención de Riesgos Biológicos , Modelos Teóricos , Residuos Radiactivos/análisis , Arcilla , Difusión , Porosidad , Radioisótopos/química , Uranio/química , Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...