Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Reprod Sci ; 30(10): 2932-2944, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37188982

RESUMEN

MicroRNAs (miRs) play an important role in the pathophysiology of endometriosis; however, the role of miR-210 in endometriosis remains unclear. This study explores the role of miR-210 and its targets, IGFBP3 and COL8A1, in ectopic lesion growth and development. Matched eutopic (EuE) and ectopic (EcE) endometrial samples were obtained for analysis from baboons and women with endometriosis. Immortalized human ectopic endometriotic epithelial cells (12Z cells) were utilized for functional assays. Endometriosis was experimentally induced in female baboons (n = 5). Human matched endometrial and endometriotic tissues were obtained from women (n = 9, 18-45 years old) with regular menstrual cycles. Quantitative reverse transcript polymerase chain reaction (RT-qPCR) analysis was performed for in vivo characterization of miR-210, IGFBP3, and COL8A1. In situ hybridization and immunohistochemical analysis were performed for cell-specific localization. Immortalized endometriotic epithelial cell lines (12Z) were utilized for in vitro functional assays. MiR-210 expression was decreased in EcE, while IGFBP3 and COL8A1 expression was increased in EcE. MiR-210 was expressed in the glandular epithelium of EuE but attenuated in those of EcE. IGFBP3 and COL8A1 were expressed in the glandular epithelium of EuE and were increased compared to EcE. MiR-210 overexpression in 12Z cells suppressed IGFBP3 expression and attenuated cell proliferation and migration. MiR-210 repression and subsequent unopposed IGFBP3 expression may contribute to endometriotic lesion development by increasing cell proliferation and migration.


Asunto(s)
Endometriosis , MicroARNs , Animales , Humanos , Femenino , Adolescente , Adulto Joven , Adulto , Persona de Mediana Edad , Endometriosis/metabolismo , Papio/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Endometrio/metabolismo , Línea Celular , Proteína 3 de Unión a Factor de Crecimiento Similar a la Insulina/genética , Proteína 3 de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo
3.
JCI Insight ; 8(11)2023 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-37104033

RESUMEN

The development and progression of endometriotic lesions are poorly understood, but immune cell dysfunction and inflammation are closely associated with the pathophysiology of endometriosis. There is a need for 3D in vitro models to permit the study of interactions between cell types and the microenvironment. To address this, we developed endometriotic spheroids (ES) to explore the role of epithelial-stromal interactions and model peritoneal invasion associated with lesion development. Using a nonadherent microwell culture system, spheroids were generated with immortalized endometriotic epithelial cells (12Z) combined with endometriotic stromal (iEc-ESC) or uterine stromal (iHUF) cell lines. Transcriptomic analysis found 4,522 differentially expressed genes in ES compared with spheroids containing uterine stromal cells. The top increased gene sets were inflammation-related pathways, and an overlap with baboon endometriotic lesions was highly significant. Finally, to mimic invasion of endometrial tissue into the peritoneum, a model was developed with human peritoneal mesothelial cells in an extracellular matrix. Invasion was increased in the presence of estradiol or pro-inflammatory macrophages and suppressed by a progestin. Taken together, our results strongly support the concept that ES are an appropriate model for dissecting mechanisms that contribute to endometriotic lesion development.


Asunto(s)
Endometriosis , Femenino , Humanos , Endometriosis/genética , Línea Celular , Células Epiteliales/metabolismo , Epitelio/metabolismo , Perfilación de la Expresión Génica
4.
Development ; 149(11)2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35575097

RESUMEN

The uterine luminal epithelium folds characteristically in mammals, including humans, horses and rodents. Improper uterine folding in horses results in pregnancy failure, but the precise function of folds remains unknown. Here, we uncover dynamic changes in the 3D uterine folding pattern during early pregnancy with the entire lumen forming pre-implantation transverse folds along the mesometrial-antimesometrial axis. Using a time course, we show that transverse folds are formed before embryo spacing, whereas implantation chambers form as the embryo begins attachment. Thus, folds and chambers are two distinct structures. Transverse folds resolve to form a flat implantation region, after which an embryo arrives at its center to attach and form the post-implantation chamber. Our data also suggest that the implantation chamber facilitates embryo rotation and its alignment along the uterine mesometrial-antimesometrial axis. Using WNT5A- and RBPJ-deficient mice that display aberrant folds, we show that embryos trapped in longitudinal folds display misalignment of the embryo-uterine axes, abnormal chamber formation and defective post-implantation morphogenesis. These mouse models with disrupted uterine folding provide an opportunity to understand uterine structure-based mechanisms that are crucial for implantation and pregnancy success. This article has an associated 'The people behind the papers' interview.


Asunto(s)
Implantación del Embrión , Útero , Animales , Embrión de Mamíferos , Epitelio , Femenino , Caballos , Humanos , Mamíferos , Ratones , Embarazo
5.
Cells ; 11(6)2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35326450

RESUMEN

Endometrial cancer (EC) is characterized by high estrogen levels unopposed by progesterone. Treatment with progestins is standard for early EC, but the response to progestins is dependent on progesterone receptor (PGR) expression. Here, we show that the expression of PGR in endometrial epithelial cells is dependent on ARID1A, a DNA-binding subunit of the SWI/SNF chromatin-remodeling complex that is commonly mutated in EC. In endometrial epithelial cells with estrogen receptor overexpression, we find that ARID1A promotes estrogen signaling and regulates common gene expression programs. Normally, endometrial epithelial cells expressing estrogen receptors respond to estrogen by upregulating the PGR. However, when ARID1A expression is lost, upregulation of PGR expression is significantly reduced. This phenomenon can also occur following the loss of the SWI/SNF subunit BRG1, suggesting a role for ARID1A- and BRG1-containing complexes in PGR regulation. We find that PGR is regulated by a bivalent promoter, which harbors both H3K4me3 and H3K27me3 histone tail modifications. H3K27me3 is deposited by EZH2, and inhibition of EZH2 in the context of ARID1A loss results in restoration of estrogen-induced PGR expression. Our results suggest a role for ARID1A deficiency in the loss of PGR in late-stage EC and a therapeutic utility for EZH2 inhibitors in this disease.


Asunto(s)
Histonas , Proteínas Nucleares , Estrógenos/farmacología , Femenino , Humanos , Proteínas Nucleares/metabolismo , Progestinas/farmacología , Receptores de Progesterona/metabolismo
6.
Mol Hum Reprod ; 27(6)2021 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-33693877

RESUMEN

About 40% of women with infertility and 70% of women with pelvic pain suffer from endometriosis. The pregnancy rate in women undergoing IVF with low endometrial integrin αvß3 (LEI) expression is significantly lower compared to the women with high endometrial integrin αvß3 (HEI). Mid-secretory eutopic endometrial biopsies were obtained from healthy controls (C; n=3), and women with HEI (n=4) and LEI (n=4) and endometriosis. Changes in gene expression were assessed using human gene arrays and DNA methylation data were derived using 385 K Two-Array Promoter Arrays. Transcriptional analysis revealed that LEI and C groups clustered separately with 396 differentially expressed genes (DEGs) (P<0.01: 275 up and 121 down) demonstrating that transcriptional and epigenetic changes are distinct in the LEI eutopic endometrium compared to the C and HEI group. In contrast, HEI vs C and HEI vs LEI comparisons only identified 83 and 45 DEGs, respectively. The methylation promoter array identified 1304 differentially methylated regions in the LEI vs C comparison. The overlap of gene and methylation array data identified 14 epigenetically dysregulated genes and quantitative RT-PCR analysis validated the transcriptomic findings. The analysis also revealed that aryl hydrocarbon receptor (AHR) was hypomethylated and significantly overexpressed in LEI samples compared to C. Further analysis validated that AHR transcript and protein expression are significantly (P<0.05) increased in LEI women compared to C. The increase in AHR, together with the altered methylation status of the 14 additional genes, may provide a diagnostic tool to identify the subset of women who have endometriosis-associated infertility.


Asunto(s)
Metilación de ADN , Endometriosis/genética , Endometrio/metabolismo , Infertilidad Femenina/etiología , Integrina alfaVbeta3/biosíntesis , Transcriptoma , Adolescente , Adulto , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/biosíntesis , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Biopsia , Regulación hacia Abajo , Endometriosis/complicaciones , Endometriosis/metabolismo , Endometrio/patología , Femenino , Humanos , Infertilidad Femenina/genética , Integrina alfaVbeta3/genética , Persona de Mediana Edad , Análisis de Componente Principal , Receptores de Hidrocarburo de Aril/biosíntesis , Receptores de Hidrocarburo de Aril/genética , Adulto Joven
7.
Reprod Sci ; 27(11): 2082-2091, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32542539

RESUMEN

Endometrial-like stromal cells, one of the main components of endometriotic lesions, are an important in vitro model for studying cellular and molecular mechanisms associated with lesion development in endometriosis. However, the short life span of primary endometriotic stromal cells (Ec-ESCs) limits their use. Human telomerase reverse transcriptase (hTERT) plasmids can be used to develop immortalized cell lines. Here we aimed to establish an endometriotic stromal cell line by hTERT immortalization. Primary Ec-ESCs were obtained from a human ovarian endometriotic cyst. The purity was assessed by morphology and the expression of vimentin, cytokeratin, and human interferon-inducible transmembrane protein 1 (hIFITM1). Cells were infected with hTERT lentiviral vector and selected with hygromycin. hTERT mRNA levels were confirmed by RT-qPCR. Immortalized Ec-ESCs (iEc-ESCs) were characterized by examining the expression of morphological markers and key genes of interest, TP53, estrogen receptor ß (ERß), progesterone receptor (PR), and steroidogenic factor-1 (SF-1). Karyotyping and in vitro decidualization studies were also performed. Ec-ESCs were positive for vimentin and hIFITM1 and negative for cytokeratin, indicating that they were representative of Ec-ESC. The fibroblast-like morphology, expression of TP53, ERß, PR, and SF-1 did not change before and after hTERT immortalization. iEc-ESCs showed an impaired decidualization response like primary Ec-ESCs when compared to normal eutopic stromal cells. Karyotyping showed that 15/19 cells had normal female karyotype, while 4/19 cells had partial trisomy 11q. Collectively, we successfully established and characterized an immortalized endometriotic stromal cell line. It is potentially useful as an in vitro experimental model to investigate endometriosis biology.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Endometriosis/fisiopatología , Endometrio/fisiología , Células del Estroma/fisiología , Línea Celular , Femenino , Vectores Genéticos , Humanos , Lentivirus/fisiología , Plásmidos , Telomerasa
8.
J Clin Endocrinol Metab ; 105(5)2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32119078

RESUMEN

CONTEXT: NOTCH signaling is activated in endometriotic lesions, but the exact mechanisms remains unclear. IL-6, which is increased in the peritoneal fluid of women with endometriosis, induces NOTCH1 through E-proteins including E2A and HEB in cancer. OBJECTIVE: To study the role of E-proteins in inducing NOTCH1 expression under the regulation of IL-6 in endometriosis. SETTING AND DESIGN: The expression of E-proteins and NOTCH1 was first investigated in endometrium of women with endometriosis and the baboon model of endometriosis. Regulation of E-proteins and NOTCH1 expression was examined after IL-6 stimulation and siRNA mediated inhibition of E2A or/and HEB in human endometriotic epithelial cells (12Z) in vitro, and subsequently following IL-6 treatment in the mouse model of endometriosis in vivo. RESULTS: E2A, HEB, and NOTCH1 were significantly upregulated in glandular epithelium (GE) of ectopic endometrium compared to eutopic endometrium in both women and the baboon model. IL-6 treatment upregulated the expression of NOTCH1 together with E2A and HEB in 12Z cells. Small interfering RNA inhibition of E2A and HEB or HEB alone decreased NOTCH1 expression. Binding efficiency of both E2A and HEB was significantly higher at the binding sites on the human NOTCH1 promoter after IL-6 treatment. Finally, IL-6 treatment resulted in a significantly increased number of endometriotic lesions along with increased expression of E2A, HEB, and NOTCH1 in GE of the lesions compared with the vehicle group in an endometriosis mouse model. CONCLUSIONS: IL-6 induced NOTCH1 expression is mediated by E-proteins in the ectopic GE cells, which may promote endometriotic lesion development.


Asunto(s)
Endometriosis/genética , Interleucina-6/farmacología , Enfermedades Peritoneales/genética , Receptor Notch1/genética , Factores de Transcripción/fisiología , Adolescente , Adulto , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Estudios de Casos y Controles , Células Cultivadas , Endometriosis/metabolismo , Endometriosis/patología , Endometrio/efectos de los fármacos , Endometrio/metabolismo , Endometrio/patología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/patología , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Interleucina-6/fisiología , Ratones , Persona de Mediana Edad , Papio , Enfermedades Peritoneales/metabolismo , Enfermedades Peritoneales/patología , Receptor Notch1/efectos de los fármacos , Receptor Notch1/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Factores de Transcripción/metabolismo , Adulto Joven
9.
Nat Commun ; 10(1): 3554, 2019 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-31391455

RESUMEN

ARID1A and PI3-Kinase (PI3K) pathway alterations are common in neoplasms originating from the uterine endometrium. Here we show that monoallelic loss of ARID1A in the mouse endometrial epithelium is sufficient for vaginal bleeding when combined with PI3K activation. Sorted mutant epithelial cells display gene expression and promoter chromatin signatures associated with epithelial-to-mesenchymal transition (EMT). We further show that ARID1A is bound to promoters with open chromatin, but ARID1A loss leads to increased promoter chromatin accessibility and the expression of EMT genes. PI3K activation partially rescues the mesenchymal phenotypes driven by ARID1A loss through antagonism of ARID1A target gene expression, resulting in partial EMT and invasion. We propose that ARID1A normally maintains endometrial epithelial cell identity by repressing mesenchymal cell fates, and that coexistent ARID1A and PI3K mutations promote epithelial transdifferentiation and collective invasion. Broadly, our findings support a role for collective epithelial invasion in the spread of abnormal endometrial tissue.


Asunto(s)
Transformación Celular Neoplásica/genética , Fosfatidilinositol 3-Quinasa Clase I/genética , Proteínas de Unión al ADN/genética , Neoplasias Endometriales/genética , Transición Epitelial-Mesenquimal/genética , Proteínas Nucleares/genética , Fosfatidilinositol 3-Quinasas/genética , Factores de Transcripción/genética , Animales , Línea Celular , Movimiento Celular/genética , Cromatina/metabolismo , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Proteínas de Unión al ADN/metabolismo , Modelos Animales de Enfermedad , Neoplasias Endometriales/patología , Endometrio/patología , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Haploinsuficiencia , Humanos , Mutación con Pérdida de Función , Ratones , Ratones Transgénicos , Miometrio/patología , Invasividad Neoplásica/genética , Proteínas Nucleares/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal/genética , Factores de Transcripción/metabolismo
10.
J Clin Endocrinol Metab ; 102(1): 141-149, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-27778641

RESUMEN

Context: Endometriosis results in aberrant gene expression in the eutopic endometrium (EuE) and subsequent progesterone resistance. MicroRNA (miR) microarray data in a baboon model of endometriosis showed an increased expression of miR-29c. Objectives: To explore the role of miR-29c in progesterone resistance in a subset of women with endometriosis. Design: MiR-29c expression was analyzed in the endometrium of baboons and women with or without endometriosis. The role in progesterone resistance and decidualization was analyzed by transfecting human uterine fibroblast cells with miR-29c. Patients: Subjects diagnosed with deep infiltrative endometriosis (DIE) by transvaginal ultrasound with bowel preparation underwent surgical excision of endometriosis. Eutopic secretory endometrium was collected pre- and postoperatively. Women with normal EuE and without DIE served as controls. Results: Quantitative reverse transcription polymerase chain reaction demonstrated that miR-29c expression increased, while the transcript levels of its target, FK506-binding protein 4 (FKBP4), decreased in the EuE of baboons following the induction of endometriosis. FKBP4 messenger RNA and decidual markers were statistically significantly decreased in decidualized human uterine fibroblast cells transfected with a miR-29c mimic compared with controls. Human data corroborated our baboon data and demonstrated higher expression of miR-29c in endometriosis EuE compared with normal EuE. MiR-29c was significantly decreased in endometriosis EuE postoperatively compared with preoperative tissues, and FKBP4 showed an inverse trend following radical laparoscopic resection surgery. Conclusions: We demonstrate that miR-29c expression is increased in EuE of baboons and women with endometriosis, which might contribute to a compromised progesterone response by diminishing the levels of FKBP4. Resection of DIE is likely to reverse the progesterone resistance associated with endometriosis in women.


Asunto(s)
Biomarcadores/análisis , Endometriosis/genética , Endometrio/anomalías , MicroARNs/genética , Progesterona/farmacología , Proteínas de Unión a Tacrolimus/metabolismo , Enfermedades Uterinas/genética , Animales , Estudios de Casos y Controles , Modelos Animales de Enfermedad , Endometriosis/tratamiento farmacológico , Endometriosis/patología , Femenino , Humanos , Papio , Pronóstico
11.
J Clin Endocrinol Metab ; 100(3): E433-42, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25546156

RESUMEN

CONTEXT: Endometriosis is a common gynecological disease affecting one in 10 women of reproductive age and is a major cause of pelvic pain and impaired fertility. Endometrial stromal cells of women with endometriosis exhibit a reduced response to in vitro decidualization. NOTCH1 is critical for decidualization of both mouse and human uterine stromal cells. OBJECTIVE: This study aimed to determine whether decidualization failure in women with endometriosis is a consequence of impaired Notch signaling. SETTING AND DESIGN: We investigated expression levels of Notch signaling components in the endometrium of women and baboons with or without endometriosis. We identified NOTCH1-regulated genes during decidualization of human uterine fibroblast (HuF) cells by microarray and quantified their expression levels in in vitro-decidualized endometrial stromal cells isolated from women with or without endometriosis. RESULTS: Notch signaling receptors NOTCH1 and NOTCH4, ligands JAGGED2 and DLL4, as well as direct target genes HES5 and HEY1 were decreased in the eutopic endometrium of women and baboons with endometriosis. Notch signaling was decreased in stromal cells isolated from women with endometriosis, which was associated with impaired in vitro decidualization. Genes that were down-regulated by NOTCH1 silencing in decidualized HuF cells were also decreased in decidualized endometrial stromal cells of women with endometriosis. FOXO1 acts as a downstream target of Notch signaling and endometriosis is associated with decreased expression of NOTCH1-regulated, FOXO1-responsive genes during decidualization. CONCLUSIONS: Decreased Notch signaling is associated with endometriosis and contributes to impaired decidualization through the down-regulation of FOXO1.


Asunto(s)
Decidua/fisiología , Implantación del Embrión/fisiología , Endometriosis/patología , Endometrio/metabolismo , Enfermedades Peritoneales/patología , Receptor Notch1/fisiología , Animales , Regulación hacia Abajo , Endometriosis/genética , Endometriosis/metabolismo , Endometrio/patología , Femenino , Perfilación de la Expresión Génica , Células HEK293 , Humanos , Análisis por Micromatrices , Enfermedades de los Monos/genética , Enfermedades de los Monos/metabolismo , Enfermedades de los Monos/patología , Papio , Enfermedades Peritoneales/genética , Enfermedades Peritoneales/metabolismo , Transducción de Señal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...