Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biocybern Biomed Eng ; 41(1): 239-254, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33518878

RESUMEN

The lethal novel coronavirus disease 2019 (COVID-19) pandemic is affecting the health of the global population severely, and a huge number of people may have to be screened in the future. There is a need for effective and reliable systems that perform automatic detection and mass screening of COVID-19 as a quick alternative diagnostic option to control its spread. A robust deep learning-based system is proposed to detect the COVID-19 using chest X-ray images. Infected patient's chest X-ray images reveal numerous opacities (denser, confluent, and more profuse) in comparison to healthy lungs images which are used by a deep learning algorithm to generate a model to facilitate an accurate diagnostics for multi-class classification (COVID vs. normal vs. bacterial pneumonia vs. viral pneumonia) and binary classification (COVID-19 vs. non-COVID). COVID-19 positive images have been used for training and model performance assessment from several hospitals of India and also from countries like Australia, Belgium, Canada, China, Egypt, Germany, Iran, Israel, Italy, Korea, Spain, Taiwan, USA, and Vietnam. The data were divided into training, validation and test sets. The average test accuracy of 97.11 ± 2.71% was achieved for multi-class (COVID vs. normal vs. pneumonia) and 99.81% for binary classification (COVID-19 vs. non-COVID). The proposed model performs rapid disease detection in 0.137 s per image in a system equipped with a GPU and can reduce the workload of radiologists by classifying thousands of images on a single click to generate a probabilistic report in real-time.

2.
Entropy (Basel) ; 22(9)2020 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-33286711

RESUMEN

Visually impaired people face numerous difficulties in their daily life, and technological interventions may assist them to meet these challenges. This paper proposes an artificial intelligence-based fully automatic assistive technology to recognize different objects, and auditory inputs are provided to the user in real time, which gives better understanding to the visually impaired person about their surroundings. A deep-learning model is trained with multiple images of objects that are highly relevant to the visually impaired person. Training images are augmented and manually annotated to bring more robustness to the trained model. In addition to computer vision-based techniques for object recognition, a distance-measuring sensor is integrated to make the device more comprehensive by recognizing obstacles while navigating from one place to another. The auditory information that is conveyed to the user after scene segmentation and obstacle identification is optimized to obtain more information in less time for faster processing of video frames. The average accuracy of this proposed method is 95.19% and 99.69% for object detection and recognition, respectively. The time complexity is low, allowing a user to perceive the surrounding scene in real time.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA