Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
1.
Curr Biol ; 34(12): R559-R561, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38889673

RESUMEN

Frankland et al. provide a history of research on engrams and their relationship to memory processes, highlighting new technologies that have allowed careful dissection of engrams and their function.


Asunto(s)
Memoria , Memoria/fisiología , Animales , Humanos , Neuronas/fisiología
2.
Philos Trans R Soc Lond B Biol Sci ; 379(1906): 20230227, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-38853560

RESUMEN

Memories are thought to be stored within sparse collections of neurons known as engram ensembles. Neurons active during a training episode are allocated to an engram ensemble ('engram neurons'). Memory retrieval is initiated by external sensory or internal cues present at the time of training reactivating engram neurons. Interestingly, optogenetic reactivation of engram ensemble neurons alone in the absence of external sensory cues is sufficient to induce behaviour consistent with memory retrieval in mice. However, there may exist differences between the behaviours induced by natural retrieval cues or artificial engram reactivation. Here, we compared two defensive behaviours (freezing and the syllable structure of ultrasonic vocalizations, USVs) induced by sensory cues present at training (natural memory retrieval) and optogenetic engram ensemble reactivation (artificial memory retrieval) in a threat conditioning paradigm in the same mice. During natural memory recall, we observed a strong positive correlation between freezing levels and distinct USV syllable features (characterized by an unsupervised algorithm, MUPET (Mouse Ultrasonic Profile ExTraction)). Moreover, we observed strikingly similar behavioural profiles in terms of freezing and USV characteristics between natural memory recall and artificial memory recall in the absence of sensory retrieval cues. Although our analysis focused on two behavioural measures of threat memory (freezing and USV characteristics), these results underscore the similarities between threat memory recall triggered naturally and through optogenetic reactivation of engram ensembles. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.


Asunto(s)
Recuerdo Mental , Optogenética , Animales , Ratones , Recuerdo Mental/fisiología , Masculino , Ratones Endogámicos C57BL , Señales (Psicología) , Neuronas/fisiología , Memoria/fisiología , Vocalización Animal/fisiología , Miedo/fisiología
3.
Mol Psychiatry ; 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719894

RESUMEN

Post-traumatic stress disorder (PTSD) is a hypermnesic condition that develops in a subset of individuals following exposure to severe trauma. PTSD symptoms are debilitating, and include increased anxiety, abnormal threat generalization, and impaired extinction. In developing treatment strategies for PTSD, preclinical studies in rodents have largely focused on interventions that target post-encoding memory processes such as reconsolidation and extinction. Instead, here we focus on forgetting, another post-encoding process that regulates memory expression. Using a double trauma murine model for PTSD, we asked whether promoting neurogenesis-mediated forgetting can weaken trauma memories and associated PTSD-relevant behavioral phenotypes. In the double trauma paradigm, consecutive aversive experiences lead to a constellation of behavioral phenotypes associated with PTSD including increases in anxiety-like behavior, abnormal threat generalization, and deficient extinction. We found that post-training interventions that elevate hippocampal neurogenesis weakened the original trauma memory and decreased these PTSD-relevant phenotypes. These effects were observed using multiple methods to manipulate hippocampal neurogenesis, including interventions restricted to neural progenitor cells that selectively promoted integration of adult-generated granule cells into hippocampal circuits. The same interventions also weakened cocaine place preference memories, suggesting that promoting hippocampal neurogenesis may represent a broadly useful approach in hypermnesic conditions such as PTSD and substance abuse disorders.

4.
Neuron ; 112(9): 1487-1497.e6, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38447576

RESUMEN

Little is understood about how engrams, sparse groups of neurons that store memories, are formed endogenously. Here, we combined calcium imaging, activity tagging, and optogenetics to examine the role of neuronal excitability and pre-existing functional connectivity on the allocation of mouse cornu ammonis area 1 (CA1) hippocampal neurons to an engram ensemble supporting a contextual threat memory. Engram neurons (high activity during recall or TRAP2-tagged during training) were more active than non-engram neurons 3 h (but not 24 h to 5 days) before training. Consistent with this, optogenetically inhibiting scFLARE2-tagged neurons active in homecage 3 h, but not 24 h, before conditioning disrupted memory retrieval, indicating that neurons with higher pre-training excitability were allocated to the engram. We also observed stable pre-configured functionally connected sub-ensembles of neurons whose activity cycled over days. Sub-ensembles that were more active before training were allocated to the engram, and their functional connectivity increased at training. Therefore, both neuronal excitability and pre-configured functional connectivity mediate allocation to an engram ensemble.


Asunto(s)
Miedo , Neuronas , Optogenética , Animales , Ratones , Neuronas/fisiología , Neuronas/metabolismo , Miedo/fisiología , Región CA1 Hipocampal/fisiología , Hipocampo/fisiología , Masculino , Ratones Endogámicos C57BL , Condicionamiento Clásico/fisiología , Memoria/fisiología
5.
Cell Rep ; 42(12): 113592, 2023 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-38103203

RESUMEN

How memories are organized in the brain influences whether they are remembered discretely versus linked with other experiences or whether generalized information is applied to entirely novel situations. Here, we used scFLARE2 (single-chain fast light- and activity-regulated expression 2), a temporally precise tagging system, to manipulate mouse lateral amygdala neurons active during one of two 3 min threat experiences occurring close (3 h) or further apart (27 h) in time. Silencing scFLARE2-tagged neurons showed that two threat experiences occurring at distal times are dis-allocated to orthogonal engram ensembles and remembered discretely, whereas the same two threat experiences occurring in close temporal proximity are linked via co-allocation to overlapping engram ensembles. Moreover, we found that co-allocation mediates memory generalization applied to a completely novel stimulus. These results indicate that endogenous temporal evolution of engram ensemble neuronal excitability determines how memories are organized and remembered and that this would not be possible using conventional immediate-early gene-based tagging methods.


Asunto(s)
Miedo , Memoria , Ratones , Animales , Memoria/fisiología , Miedo/fisiología , Neuronas/fisiología , Encéfalo/fisiología , Recuerdo Mental/fisiología
6.
Curr Biol ; 33(18): R955-R957, 2023 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-37751708

RESUMEN

A new study shows that while the neuronal organization of a memory changes with time, including greater cortical engagement, a core ensemble exists in the CA1 region of the dorsal hippocampus that is necessary for retrieval of both a recent and remote memory.


Asunto(s)
Hipocampo , Memoria a Largo Plazo
7.
PLoS One ; 18(8): e0289649, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37561677

RESUMEN

Humans can navigate through similar environments-like grocery stores-by integrating across their memories to extract commonalities or by differentiating between each to find idiosyncratic locations. Here, we investigate one factor that might impact whether two related spatial memories are integrated or differentiated: Namely, the temporal delay between experiences. Rodents have been shown to integrate memories more often when they are formed within 6 hours of each other. To test if this effect influences how humans spontaneously integrate spatial memories, we had 131 participants search for rewards in two similar virtual environments. We separated these learning experiences by either 30 minutes, 3 hours, or 27 hours. Memory integration was assessed three days later. Participants were able to integrate and simultaneously differentiate related memories across experiences. However, neither memory integration nor differentiation was modulated by temporal delay, in contrast to previous work. We further showed that both the levels of initial memory reactivation during the second experience and memory generalization to novel environments were comparable across conditions. Moreover, perseveration toward the initial reward locations during the second experience was related positively to integration and negatively to differentiation-but again, these associations did not vary by delay. Our findings identify important boundary conditions on the translation of rodent memory mechanisms to humans, motivating more research to characterize how even fundamental memory mechanisms are conserved and diverge across species.


Asunto(s)
Generalización Psicológica , Memoria Espacial , Humanos , Generalización Psicológica/fisiología , Recompensa
8.
Science ; 380(6644): 543-551, 2023 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-37141366

RESUMEN

The ability to form precise, episodic memories develops with age, with young children only able to form gist-like memories that lack precision. The cellular and molecular events in the developing hippocampus that underlie the emergence of precise, episodic-like memory are unclear. In mice, the absence of a competitive neuronal engram allocation process in the immature hippocampus precluded the formation of sparse engrams and precise memories until the fourth postnatal week, when inhibitory circuits in the hippocampus mature. This age-dependent shift in precision of episodic-like memories involved the functional maturation of parvalbumin-expressing interneurons in subfield CA1 through assembly of extracellular perineuronal nets, which is necessary and sufficient for the onset of competitive neuronal allocation, sparse engram formation, and memory precision.


Asunto(s)
Hipocampo , Memoria Episódica , Ratones , Animales , Hipocampo/fisiología , Neuronas/fisiología , Interneuronas , Ratones Endogámicos C57BL
9.
Neuron ; 111(12): 1952-1965.e5, 2023 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-37015224

RESUMEN

The brain organizes experiences into memories that guide future behavior. Hippocampal CA1 population activity is hypothesized to reflect predictive models that contain information about future events, but little is known about how they develop. We trained mice on a series of problems with or without a common statistical structure to observe how memories are formed and updated. Mice that learned structured problems integrated their experiences into a predictive model that contained the solutions to upcoming novel problems. Retrieving the model during learning improved discrimination accuracy and facilitated learning. Using calcium imaging to track CA1 activity during learning, we found that hippocampal ensemble activity became more stable as mice formed a predictive model. The hippocampal ensemble was reactivated during training and incorporated new activity patterns from each training problem. These results show how hippocampal activity supports building predictive models by organizing new information with respect to existing memories.


Asunto(s)
Hipocampo , Aprendizaje , Ratones , Animales , Calcio
10.
Neuron ; 111(11): 1830-1845.e5, 2023 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-36990091

RESUMEN

According to the encoding specificity hypothesis, memory is best recalled by retrieval cues that overlap with training cues. Human studies generally support this hypothesis. However, memories are thought to be stored in neuronal ensembles (engrams), and retrieval cues are thought to reactivate neurons in an engram to induce memory recall. Here, we visualized engrams in mice to test whether retrieval cues that overlap with training cues produce maximal memory recall via high engram reactivation (engram encoding specificity hypothesis). Using variations of cued threat conditioning (pairing conditioned stimulus [CS] with footshock), we manipulated encoding and retrieval conditions along multiple domains, including pharmacological state, external sensory cue, and internal optogenetic cue. Maximal engram reactivation and memory recall occurred when retrieval conditions closely matched training conditions. These findings provide a biological basis for the encoding specificity hypothesis and highlight the important interaction between stored information (engram) and cues available at memory retrieval (ecphory).


Asunto(s)
Memoria , Recuerdo Mental , Ratones , Humanos , Animales , Memoria/fisiología , Recuerdo Mental/fisiología , Condicionamiento Clásico/fisiología , Neuronas/fisiología , Señales (Psicología)
11.
Curr Biol ; 33(3): R96-R97, 2023 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-36750030

RESUMEN

Stable neural ensembles are often thought to underlie stable learned behaviors and memory. Recent longitudinal experiments, however, that tracked the activity of the same neurons over days to weeks have shown that neuronal activity patterns can change over extended timescales even if behaviors remain the same - a phenomenon termed representational drift1. We have tested whether neural circuit remodeling, defined as any change in structural connectivity, contributes to representational drift. To do this, we tracked how hippocampal CA1 spatial representations of a familiar environment change with time in conventionally housed mice relative to mice housed with a running wheel. Voluntary exercise is an environmental stimulus that promotes hippocampal circuit remodeling, primarily via promoting adult neurogenesis in the dentate gyrus. Adult neurogenesis alters structural connectivity patterns, as the integration of adult-generated granule cells (abGCs) is a competitive process where new input-output synaptic connections may co-exist and/or even replace existing synaptic connections2. Comparing the spatial activity of downstream hippocampal CA1 place cells in the same familiar environment over two weeks, we found that the activity of place cells in exercise mice exhibited accelerated representational drift compared to control mice, suggesting that hippocampal circuit remodeling may indeed drive representational drift.


Asunto(s)
Células de Lugar , Ratones , Animales , Neuronas/fisiología , Hipocampo/fisiología , Neurogénesis/fisiología , Giro Dentado/fisiología , Ratones Endogámicos C57BL
12.
Neuropsychopharmacology ; 48(5): 724-733, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36261624

RESUMEN

Memories allow past experiences to guide future decision making and behavior. Sparse ensembles of neurons, known as engrams, are thought to store memories in the brain. Most previous research has focused on engrams supporting threatening or fearful memories where results show that neurons involved in a particular engram ("engram neurons") are both necessary and sufficient for memory expression. Far less is understood about engrams supporting appetitive or rewarding memories. As circumstances and environments are dynamic, the fate of a previously acquired engram with changing circumstances is unknown. Here we examined how engrams supporting a rewarding cue-cocaine memory are formed and whether this original engram is important in reinstatement of memory-guided behavior following extinction. Using a variety of techniques, we show that neurons in the lateral amygdala are allocated to an engram based on relative neuronal excitability at training. Furthermore, once allocated, these neurons become both necessary and sufficient for behavior consistent with recall of that rewarding memory. Allocated neurons are also critical for cocaine-primed reinstatement of memory-guided behavior following extinction. Moreover, artificial reactivation of initially allocated neurons supports reinstatement-like behavior following extinction even in the absence of cocaine-priming. Together, these findings suggest that cocaine priming after extinction reactivates the original engram, and that memory-guided reinstatement behavior does not occur in the absence of this reactivation. Although we focused on neurons in one brain region only, our findings that manipulations of lateral amygdala engram neurons alone were sufficient to impact memory-guided behavior indicate that the lateral amygdala is a critical hub region in what may be a larger brain-wide engram.


Asunto(s)
Complejo Nuclear Basolateral , Cocaína , Ratones , Animales , Recuerdo Mental/fisiología , Encéfalo/fisiología , Neuronas/fisiología , Cocaína/farmacología
13.
Proc Natl Acad Sci U S A ; 119(45): e2206704119, 2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36322739

RESUMEN

New neurons are continuously generated in the subgranular zone of the dentate gyrus throughout adulthood. These new neurons gradually integrate into hippocampal circuits, forming new naive synapses. Viewed from this perspective, these new neurons may represent a significant source of "wiring" noise in hippocampal networks. In machine learning, such noise injection is commonly used as a regularization technique. Regularization techniques help prevent overfitting training data and allow models to generalize learning to new, unseen data. Using a computational modeling approach, here we ask whether a neurogenesis-like process similarly acts as a regularizer, facilitating generalization in a category learning task. In a convolutional neural network (CNN) trained on the CIFAR-10 object recognition dataset, we modeled neurogenesis as a replacement/turnover mechanism, where weights for a randomly chosen small subset of hidden layer neurons were reinitialized to new values as the model learned to categorize 10 different classes of objects. We found that neurogenesis enhanced generalization on unseen test data compared to networks with no neurogenesis. Moreover, neurogenic networks either outperformed or performed similarly to networks with conventional noise injection (i.e., dropout, weight decay, and neural noise). These results suggest that neurogenesis can enhance generalization in hippocampal learning through noise injection, expanding on the roles that neurogenesis may have in cognition.


Asunto(s)
Memoria , Neurogénesis , Memoria/fisiología , Neurogénesis/fisiología , Hipocampo/fisiología , Neuronas/fisiología , Sinapsis , Giro Dentado/fisiología
14.
Brain Res Bull ; 191: 61-68, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36279984

RESUMEN

Memories of past experiences guide future behaviour. Sparse ensembles of neurons, known as engrams, are thought to store memories in the brain. Neurons involved in a particular engram ("engram neurons") are necessary for subsequent memory expression as memory retrieval is thought to be initiated by an external sensory cue reactivating engram neurons. However, conditions or environments are dynamic, such that future behaviour should be flexible. The role of engrams in mediating flexible behaviour is not understood. Here we examined this question using one type of flexible behaviour, extinction of a threat response. An initially neutral tone is first paired with an aversive footshock such that the tone alone induces defensive freezing. After subsequent repeated tone presentations without the footshock, rodents no longer freeze to the tone. Because the tone cue is thought to reactivate the engram to induce memory retrieval, we examined whether it is possible to induce an extinction-like behavioural effect by optogenetically reactivating the lateral amygdala component of the engram alone (without tone re-exposure). Similar to tone-induced extinction, mice showed decreased freezing to optogenetic stimulation of the lateral amygdala engram in the "extinction training" session. Moreover, "opto-extinguished" mice showed decreased freezing to the tone when subsequently tested for retrieval of the extinction training in the same context, suggesting that the opto-extinction transferred to the actual sensory stimulus. However, unlike tone extinction, in which mice showed renewal of tone-induced freezing when tested in a novel context, opto-extinguished mice continued to show a deficit in tone-induced freezing. Extinction has been characterized as new learning that inhibits the original memory or a phenomenon in which the original memory is "unlearned". Our findings suggest that opto-extinction may silence the original engram to "unlearn" the original memory.


Asunto(s)
Miedo , Memoria , Animales , Ratones , Amígdala del Cerebelo/fisiología , Extinción Psicológica/fisiología , Miedo/fisiología , Memoria/fisiología , Neuronas/metabolismo , Optogenética
15.
PLoS Negl Trop Dis ; 16(7): e0010600, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35857765

RESUMEN

During chronic infection, the single celled parasite, Toxoplasma gondii, can migrate to the brain where it has been associated with altered dopamine function and the capacity to modulate host behavior, increasing risk of neurocognitive disorders. Here we explore alterations in dopamine-related behavior in a new mouse model based on stimulant (cocaine)-induced hyperactivity. In combination with cocaine, infection resulted in heightened sensorimotor deficits and impairment in prepulse inhibition response, which are commonly disrupted in neuropsychiatric conditions. To identify molecular pathways in the brain affected by chronic T. gondii infection, we investigated patterns of gene expression. As expected, infection was associated with an enrichment of genes associated with general immune response pathways, that otherwise limits statistical power to identify more informative pathways. To overcome this limitation and focus on pathways of neurological relevance, we developed a novel context enrichment approach that relies on a customized ontology. Applying this approach, we identified genes that exhibited unexpected patterns of expression arising from the combination of cocaine exposure and infection. These include sets of genes which exhibited dampened response to cocaine in infected mice, suggesting a possible mechanism for some observed behaviors and a neuroprotective effect that may be advantageous to parasite persistence. This model offers a powerful new approach to dissect the molecular pathways by which T. gondii infection contributes to neurocognitive disorders.


Asunto(s)
Cocaína , Toxoplasma , Animales , Encéfalo/parasitología , Cocaína/metabolismo , Dopamina , Expresión Génica , Masculino , Ratones
16.
Neuroscience ; 475: 1-9, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34464663

RESUMEN

The hippocampus is a critical structure involved in many forms of learning and memory. It is also one of the only regions in the mammalian brain that continues to generate new neurons throughout adulthood. This process of adult neurogenesis may increase the plasticity of the hippocampus which could be beneficial for learning but has also been demonstrated to decrease the stability of previously acquired memories. Here we test whether exposure to voluntary running (which increases the production of new neurons) following the formation of a gradually acquired paired associates task will result in forgetting of this type of memory. We trained mice in a touchscreen-based object/location task and then increased neurogenesis using voluntary running. Our results indicate that running increased neurogenesis and resulted in poor recall of the previously established memory. When subsequently exposed to a reversal task we also show that running reduced the number of correction trials required to acquire the new task contingencies. This suggests that prior forgetting reduces perseveration on the now outdated memory. Together our results add to a growing body of literature which indicates the important role of adult neurogenesis in destabilizing previously acquired memories to allow for flexible encoding of new memories.


Asunto(s)
Neurogénesis , Condicionamiento Físico Animal , Animales , Hipocampo , Aprendizaje , Ratones , Neuronas
18.
Brain Stimul ; 14(3): 635-642, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33785406

RESUMEN

BACKGROUND: Post-traumatic Stress Disorder (PTSD) often does not respond to available treatments. Memories are vulnerable to disruption during reconsolidation, and electroconvulsive therapy (ECT) has amnestic effects OBJECTIVE/HYPOTHESIS: To test the use of ECT to disrupt the reconsolidation of traumatic memories as a potential treatment for PTSD METHODS: Participants were adults from the civilian population and were referred for ECT treatment for severe depression with comorbid PTSD symptoms. Twenty-eight participants were randomly assigned to reactivation of a traumatic or non-traumatic memory using audio script driven imagery prior to each ECT treatment. Primary outcomes were change in scores on the Modified PTSD Symptom Scale - Self Report (MPSS-SR) and the Clinician-Administered PTSD Scale for DSM-5 (CAPS-5). Secondary outcomes included a comparison of the change in heart rate while listening to the script RESULTS: Twenty-five female patients who completed a post-ECT assessment were included in the analysis. No significant group differences were found in the MPSS-SR or CAPS-5 scores from pre-ECT to post-ECT or 3-month follow-ups. However, both groups improved at post-ECT and 3-month follow up. Partial eta squared estimates of effect size showed large effect sizes for all outcomes (η2 > 0.13). Changes in heart rate were not significantly different between groups or over time CONCLUSIONS: ECT paired with pre-treatment traumatic memory reactivation was not more effective for treating PTSD symptoms than ECT with non-traumatic memory reactivation. While our primary hypothesis was not supported, our data provides further support for the efficacy of ECT for improving symptoms of PTSD with comorbid depression. ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT04027452. IDENTIFIER: NCT04027452.


Asunto(s)
Terapia Electroconvulsiva , Trastornos por Estrés Postraumático , Adulto , Femenino , Frecuencia Cardíaca , Humanos , Trastornos por Estrés Postraumático/terapia , Tiempo , Resultado del Tratamiento
19.
Nat Neurosci ; 24(5): 685-693, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33782621

RESUMEN

Memories are supported by distributed hippocampal-thalamic-cortical networks, but the brain regions that contribute to network activity may vary with memory age. This process of reorganization is referred to as systems consolidation, and previous studies have examined the relationship between the activation of different hippocampal, thalamic, and cortical brain regions and memory age at the time of recall. While the activation of some brain regions increases with memory age, other regions become less active. In mice, here we show that the active disengagement of one such brain region, the anterodorsal thalamic nucleus, is necessary for recall at remote time-points and, in addition, which projection(s) mediate such inhibition. Specifically, we identified a sparse inhibitory projection from CA3 to the anterodorsal thalamic nucleus that becomes more active during systems consolidation, such that it is necessary for contextual fear memory retrieval at remote, but not recent, time-points post-learning.


Asunto(s)
Hipocampo/fisiología , Recuerdo Mental/fisiología , Inhibición Neural/fisiología , Tálamo/fisiología , Animales , Miedo/fisiología , Masculino , Consolidación de la Memoria/fisiología , Ratones , Vías Nerviosas/fisiología
20.
Nat Rev Neurosci ; 21(10): 524-534, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32879507

RESUMEN

The first issue of Nature Reviews Neuroscience was published 20 years ago, in 2000. To mark this anniversary, in this Viewpoint article we asked a selection of researchers from across the field who have authored pieces published in the journal in recent years for their thoughts on notable and interesting developments in neuroscience, and particularly in their areas of the field, over the past two decades. They also provide some thoughts on current lines of research and questions that excite them.


Asunto(s)
Neurociencias/historia , Historia del Siglo XXI , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...