Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(4): e2210593120, 2023 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-36656860

RESUMEN

Mitotic entry correlates with the condensation of the chromosomes, changes in histone modifications, exclusion of transcription factors from DNA, and the broad downregulation of transcription. However, whether mitotic condensation influences transcription in the subsequent interphase is unknown. Here, we show that preventing one chromosome to condense during mitosis causes it to fail resetting of transcription. Rather, in the following interphase, the affected chromosome contains unusually high levels of the transcription machinery, resulting in abnormally high expression levels of genes in cis, including various transcription factors. This subsequently causes the activation of inducible transcriptional programs in trans, such as the GAL genes, even in the absence of the relevant stimuli. Thus, mitotic chromosome condensation exerts stringent control on interphase gene expression to ensure the maintenance of basic cellular functions and cell identity across cell divisions. Together, our study identifies the maintenance of transcriptional homeostasis during interphase as an unexpected function of mitosis and mitotic chromosome condensation.


Asunto(s)
Cromatina , Cromosomas , Cromatina/genética , Cromosomas/genética , Cromosomas/metabolismo , Interfase/genética , Mitosis/genética , Factores de Transcripción/metabolismo
2.
Nucleic Acids Res ; 50(3): 1351-1369, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35100417

RESUMEN

Tight control of gene expression networks required for adipose tissue formation and plasticity is essential for adaptation to energy needs and environmental cues. However, the mechanisms that orchestrate the global and dramatic transcriptional changes leading to adipocyte differentiation remain to be fully unraveled. We investigated the regulation of nascent transcription by the sumoylation pathway during adipocyte differentiation using SLAMseq and ChIPseq. We discovered that the sumoylation pathway has a dual function in differentiation; it supports the initial downregulation of pre-adipocyte-specific genes, while it promotes the establishment of the mature adipocyte transcriptional program. By characterizing endogenous sumoylome dynamics in differentiating adipocytes by mass spectrometry, we found that sumoylation of specific transcription factors like PPARγ/RXR and their co-factors are associated with the transcription of adipogenic genes. Finally, using RXR as a model, we found that sumoylation may regulate adipogenic transcription by supporting the chromatin occurrence of transcription factors. Our data demonstrate that the sumoylation pathway supports the rewiring of transcriptional networks required for formation of functional adipocytes. This study also provides the scientists in the field of cellular differentiation and development with an in-depth resource of the dynamics of the SUMO-chromatin landscape, SUMO-regulated transcription and endogenous sumoylation sites during adipocyte differentiation.


Asunto(s)
Adipogénesis , Sumoilación , Adipocitos/metabolismo , Adipogénesis/genética , Diferenciación Celular/genética , Cromatina/genética , Cromatina/metabolismo , Factores de Transcripción/metabolismo
3.
J Exp Med ; 218(10)2021 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-34459852

RESUMEN

Our understanding of cell fate decisions in hematopoietic stem cells is incomplete. Here, we show that the transcription factor Helios is highly expressed in murine hematopoietic stem and progenitor cells (HSPCs), where it is required to suppress the separation of the platelet/megakaryocyte lineage from the HSPC pool. Helios acts mainly in quiescent cells, where it directly represses the megakaryocyte gene expression program in cells as early as the stem cell stage. Helios binding promotes chromatin compaction, notably at the regulatory regions of platelet-specific genes recognized by the Gata2 and Runx1 transcriptional activators, implicated in megakaryocyte priming. Helios null HSPCs are biased toward the megakaryocyte lineage at the expense of the lymphoid and partially resemble cells of aging animals. We propose that Helios acts as a guardian of HSPC pluripotency by continuously repressing the megakaryocyte fate, which in turn allows downstream lymphoid priming to take place. These results highlight the importance of negative and positive priming events in lineage commitment.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Células Madre Hematopoyéticas/fisiología , Megacariocitos/fisiología , Factores de Transcripción/metabolismo , Animales , Diferenciación Celular , Proteínas de Unión al ADN/genética , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Células Madre Hematopoyéticas/citología , Linfocitos/citología , Linfocitos/fisiología , Masculino , Megacariocitos/citología , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Linfocitos T/citología , Linfocitos T/fisiología , Factores de Transcripción/genética
4.
Mol Metab ; 53: 101313, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34352411

RESUMEN

OBJECTIVE: Mice lacking the bHLH transcription factor (TF) Neurog3 do not form pancreatic islet cells, including insulin-secreting beta cells, the absence of which leads to diabetes. In humans, homozygous mutations of NEUROG3 manifest with neonatal or childhood diabetes. Despite this critical role in islet cell development, the precise function of and downstream genetic programs regulated directly by NEUROG3 remain elusive. Therefore, we mapped genome-wide NEUROG3 occupancy in human induced pluripotent stem cell (hiPSC)-derived endocrine progenitors and determined NEUROG3 dependency of associated genes to uncover direct targets. METHODS: We generated a novel hiPSC line (NEUROG3-HA-P2A-Venus) where NEUROG3 is HA-tagged and fused to a self-cleaving fluorescent VENUS reporter. We used the CUT&RUN technique to map NEUROG3 occupancy and epigenetic marks in pancreatic endocrine progenitors (PEP) that were differentiated from this hiPSC line. We integrated NEUROG3 occupancy data with chromatin status and gene expression in PEPs as well as their NEUROG3-dependence. In addition, we investigated whether NEUROG3 binds type 2 diabetes mellitus (T2DM)-associated variants at the PEP stage. RESULTS: CUT&RUN revealed a total of 863 NEUROG3 binding sites assigned to 1263 unique genes. NEUROG3 occupancy was found at promoters as well as at distant cis-regulatory elements that frequently overlapped within PEP active enhancers. De novo motif analyses defined a NEUROG3 consensus binding motif and suggested potential co-regulation of NEUROG3 target genes by FOXA or RFX transcription factors. We found that 22% of the genes downregulated in NEUROG3-/- PEPs, and 10% of genes enriched in NEUROG3-Venus positive endocrine cells were bound by NEUROG3 and thus likely to be directly regulated. NEUROG3 binds to 138 transcription factor genes, some with important roles in islet cell development or function, such as NEUROD1, PAX4, NKX2-2, SOX4, MLXIPL, LMX1B, RFX3, and NEUROG3 itself, and many others with unknown islet function. Unexpectedly, we uncovered that NEUROG3 targets genes critical for insulin secretion in beta cells (e.g., GCK, ABCC8/KCNJ11, CACNA1A, CHGA, SCG2, SLC30A8, and PCSK1). Thus, analysis of NEUROG3 occupancy suggests that the transient expression of NEUROG3 not only promotes islet destiny in uncommitted pancreatic progenitors, but could also initiate endocrine programs essential for beta cell function. Lastly, we identified eight T2DM risk SNPs within NEUROG3-bound regions. CONCLUSION: Mapping NEUROG3 genome occupancy in PEPs uncovered unexpectedly broad, direct control of the endocrine genes, raising novel hypotheses on how this master regulator controls islet and beta cell differentiation.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Sistema Endocrino/metabolismo , Redes Reguladoras de Genes/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Páncreas/metabolismo , Células Cultivadas , Humanos
5.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33893236

RESUMEN

The production of proinflammatory cytokines, particularly granulocyte-macrophage colony-stimulating factor (GM-CSF), by pathogenic CD4+ T cells is central for mediating tissue injury in inflammatory and autoimmune diseases. However, the factors regulating the T cell pathogenic gene expression program remain unclear. Here, we investigated how the Ikaros transcription factor regulates the global gene expression and chromatin accessibility changes in murine T cells during Th17 polarization and after activation via the T cell receptor (TCR) and CD28. We found that, in both conditions, Ikaros represses the expression of genes from the pathogenic signature, particularly Csf2, which encodes GM-CSF. We show that, in TCR/CD28-activated T cells, Ikaros binds a critical enhancer downstream of Csf2 and is required to regulate chromatin accessibility at multiple regions across this locus. Genome-wide Ikaros binding is associated with more compact chromatin, notably at multiple sites containing NFκB or STAT5 target motifs, and STAT5 or NFκB inhibition prevents GM-CSF production in Ikaros-deficient cells. Importantly, Ikaros also limits GM-CSF production in TCR/CD28-activated human T cells. Our data therefore highlight a critical conserved transcriptional mechanism that antagonizes GM-CSF expression in T cells.


Asunto(s)
Linfocitos T CD4-Positivos/metabolismo , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Factor de Transcripción Ikaros/metabolismo , Activación de Linfocitos , Diferenciación Celular , Células Cultivadas , Epigenoma , Regulación de la Expresión Génica , Humanos
6.
Nat Commun ; 10(1): 4919, 2019 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-31664039

RESUMEN

Familial Adult Myoclonic Epilepsy (FAME) is a genetically heterogeneous disorder characterized by cortical tremor and seizures. Intronic TTTTA/TTTCA repeat expansions in SAMD12 (FAME1) are the main cause of FAME in Asia. Using genome sequencing and repeat-primed PCR, we identify another site of this repeat expansion, in MARCH6 (FAME3) in four European families. Analysis of single DNA molecules with nanopore sequencing and molecular combing show that expansions range from 3.3 to 14 kb on average. However, we observe considerable variability in expansion length and structure, supporting the existence of multiple expansion configurations in blood cells and fibroblasts of the same individual. Moreover, the largest expansions are associated with micro-rearrangements occurring near the expansion in 20% of cells. This study provides further evidence that FAME is caused by intronic TTTTA/TTTCA expansions in distinct genes and reveals that expansions exhibit an unexpectedly high somatic instability that can ultimately result in genomic rearrangements.


Asunto(s)
Expansión de las Repeticiones de ADN , Epilepsias Mioclónicas/genética , Proteínas de la Membrana/genética , Ubiquitina-Proteína Ligasas/genética , Adolescente , Adulto , Anciano , Mapeo Cromosómico , Femenino , Humanos , Intrones , Masculino , Persona de Mediana Edad , Linaje , Adulto Joven
7.
Genome Biol ; 18(1): 114, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28619072

RESUMEN

BACKGROUND: Plant adaptive responses to changing environments involve complex molecular interplays between intrinsic and external signals. Whilst much is known on the signaling components mediating diurnal, light, and temperature controls on plant development, their influence on chromatin-based transcriptional controls remains poorly explored. RESULTS: In this study we show that a SWI/SNF chromatin remodeler subunit, BAF60, represses seedling growth by modulating DNA accessibility of hypocotyl cell size regulatory genes. BAF60 binds nucleosome-free regions of multiple G box-containing genes, opposing in cis the promoting effect of the photomorphogenic and thermomorphogenic regulator Phytochrome Interacting Factor 4 (PIF4) on hypocotyl elongation. Furthermore, BAF60 expression level is regulated in response to light and daily rhythms. CONCLUSIONS: These results unveil a short path between a chromatin remodeler and a signaling component to fine-tune plant morphogenesis in response to environmental conditions.


Asunto(s)
Proteínas de Arabidopsis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proteínas Cromosómicas no Histona/genética , Proteínas de Unión al ADN/genética , Hipocótilo/crecimiento & desarrollo , Plantones/genética , Factores de Transcripción/genética , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Ensamble y Desensamble de Cromatina , ADN de Plantas/genética , Regulación de la Expresión Génica de las Plantas , Hipocótilo/genética , Nucleosomas/genética , Plantones/crecimiento & desarrollo
8.
Genome Res ; 27(6): 934-946, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28348165

RESUMEN

DNA methylation is an essential epigenetic modification, present in both unique DNA sequences and repetitive elements, but its exact function in repetitive elements remains obscure. Here, we describe the genome-wide comparative analysis of the 5mC, 5hmC, 5fC, and 5caC profiles of repetitive elements in mouse embryonic fibroblasts and mouse embryonic stem cells. We provide evidence for distinct and highly specific DNA methylation/oxidation patterns of the repetitive elements in both cell types, which mainly affect CA repeats and evolutionarily conserved mouse-specific transposable elements including IAP-LTRs, SINEs B1m/B2m, and L1Md-LINEs. DNA methylation controls the expression of these retroelements, which are clustered at specific locations in the mouse genome. We show that TDG is implicated in the regulation of their unique DNA methylation/oxidation signatures and their dynamics. Our data suggest the existence of a novel epigenetic code for the most recently acquired evolutionarily conserved repeats that could play a major role in cell differentiation.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Fibroblastos/metabolismo , Genoma , Células Madre Embrionarias de Ratones/metabolismo , Secuencias Repetitivas de Ácidos Nucleicos , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Animales , Diferenciación Celular , Citosina/análogos & derivados , Citosina/metabolismo , Elementos Transponibles de ADN , Fibroblastos/citología , Ratones , Células Madre Embrionarias de Ratones/citología , Cultivo Primario de Células , Timina ADN Glicosilasa/genética , Timina ADN Glicosilasa/metabolismo
9.
Eur J Hum Genet ; 25(4): 423-431, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28176767

RESUMEN

Fragile-X syndrome (FXS) is a frequent genetic form of intellectual disability (ID). The main recurrent mutagenic mechanism causing FXS is the expansion of a CGG repeat sequence in the 5'-UTR of the FMR1 gene, therefore, routinely tested in ID patients. We report here three FMR1 intragenic pathogenic variants not affecting this sequence, identified using high-throughput sequencing (HTS): a previously reported hemizygous deletion encompassing the last exon of FMR1, too small to be detected by array-CGH and inducing decreased expression of a truncated form of FMRP protein, in three brothers with ID (family 1) and two splice variants in boys with sporadic ID: a de novo variant c.990+1G>A (family 2) and a maternally inherited c.420-8A>G variant (family 3). After clinical reevaluation, the five patients presented features consistent with FXS (mean Hagerman's scores=15). We conducted a systematic review of all rare non-synonymous variants previously reported in FMR1 in ID patients and showed that six of them are convincing pathogenic variants. This study suggests that intragenic FMR1 variants, although much less frequent than CGG expansions, are a significant mutational mechanism leading to FXS and demonstrates the interest of HTS approaches to detect them in ID patients with a negative standard work-up.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/genética , Mutación , Femenino , Síndrome del Cromosoma X Frágil/diagnóstico , Humanos , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Empalme del ARN , Hermanos
10.
PLoS Genet ; 12(12): e1006512, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27941970

RESUMEN

Altered daily patterns of hormone action are suspected to contribute to metabolic disease. It is poorly understood how the adrenal glucocorticoid hormones contribute to the coordination of daily global patterns of transcription and metabolism. Here, we examined diurnal metabolite and transcriptome patterns in a zebrafish glucocorticoid deficiency model by RNA-Seq, NMR spectroscopy and liquid chromatography-based methods. We observed dysregulation of metabolic pathways including glutaminolysis, the citrate and urea cycles and glyoxylate detoxification. Constant, non-rhythmic glucocorticoid treatment rescued many of these changes, with some notable exceptions among the amino acid related pathways. Surprisingly, the non-rhythmic glucocorticoid treatment rescued almost half of the entire dysregulated diurnal transcriptome patterns. A combination of E-box and glucocorticoid response elements is enriched in the rescued genes. This simple enhancer element combination is sufficient to drive rhythmic circadian reporter gene expression under non-rhythmic glucocorticoid exposure, revealing a permissive function for the hormones in glucocorticoid-dependent circadian transcription. Our work highlights metabolic pathways potentially contributing to morbidity in patients with glucocorticoid deficiency, even under glucocorticoid replacement therapy. Moreover, we provide mechanistic insight into the interaction between the circadian clock and glucocorticoids in the transcriptional regulation of metabolism.


Asunto(s)
Proteínas CLOCK/biosíntesis , Relojes Circadianos/genética , Elementos E-Box/genética , Glucocorticoides/genética , Redes y Vías Metabólicas/genética , Animales , Proteínas CLOCK/genética , Ritmo Circadiano/genética , Ácido Cítrico/metabolismo , Regulación de la Expresión Génica , Glucocorticoides/biosíntesis , Glucocorticoides/deficiencia , Secuenciación de Nucleótidos de Alto Rendimiento , Hormonas/genética , Hormonas/metabolismo , Humanos , Espectroscopía de Resonancia Magnética , Transcripción Genética , Transcriptoma/genética , Urea/metabolismo , Pez Cebra
11.
Nat Commun ; 7: 11067, 2016 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-27063795

RESUMEN

Myotonic dystrophy (DM) is caused by the expression of mutant RNAs containing expanded CUG repeats that sequester muscleblind-like (MBNL) proteins, leading to alternative splicing changes. Cardiac alterations, characterized by conduction delays and arrhythmia, are the second most common cause of death in DM. Using RNA sequencing, here we identify novel splicing alterations in DM heart samples, including a switch from adult exon 6B towards fetal exon 6A in the cardiac sodium channel, SCN5A. We find that MBNL1 regulates alternative splicing of SCN5A mRNA and that the splicing variant of SCN5A produced in DM presents a reduced excitability compared with the control adult isoform. Importantly, reproducing splicing alteration of Scn5a in mice is sufficient to promote heart arrhythmia and cardiac-conduction delay, two predominant features of myotonic dystrophy. In conclusion, misregulation of the alternative splicing of SCN5A may contribute to a subset of the cardiac dysfunctions observed in myotonic dystrophy.


Asunto(s)
Empalme Alternativo/genética , Arritmias Cardíacas/complicaciones , Arritmias Cardíacas/genética , Sistema de Conducción Cardíaco/fisiopatología , Distrofia Miotónica/complicaciones , Distrofia Miotónica/genética , Canal de Sodio Activado por Voltaje NAV1.5/genética , Adulto , Anciano , Animales , Secuencia de Bases , Sitios de Unión , Simulación por Computador , Fenómenos Electrofisiológicos , Exones/genética , Femenino , Células HEK293 , Sistema de Conducción Cardíaco/patología , Humanos , Masculino , Persona de Mediana Edad , Datos de Secuencia Molecular , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Motivos de Nucleótidos/genética , Proteínas de Unión al ARN/metabolismo , Canales de Sodio/metabolismo , Xenopus
12.
J Med Genet ; 53(2): 98-110, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26502894

RESUMEN

BACKGROUND: Orodental diseases include several clinically and genetically heterogeneous disorders that can present in isolation or as part of a genetic syndrome. Due to the vast number of genes implicated in these disorders, establishing a molecular diagnosis can be challenging. We aimed to develop a targeted next-generation sequencing (NGS) assay to diagnose mutations and potentially identify novel genes mutated in this group of disorders. METHODS: We designed an NGS gene panel that targets 585 known and candidate genes in orodental disease. We screened a cohort of 101 unrelated patients without a molecular diagnosis referred to the Reference Centre for Oro-Dental Manifestations of Rare Diseases, Strasbourg, France, for a variety of orodental disorders including isolated and syndromic amelogenesis imperfecta (AI), isolated and syndromic selective tooth agenesis (STHAG), isolated and syndromic dentinogenesis imperfecta, isolated dentin dysplasia, otodental dysplasia and primary failure of tooth eruption. RESULTS: We discovered 21 novel pathogenic variants and identified the causative mutation in 39 unrelated patients in known genes (overall diagnostic rate: 39%). Among the largest subcohorts of patients with isolated AI (50 unrelated patients) and isolated STHAG (21 unrelated patients), we had a definitive diagnosis in 14 (27%) and 15 cases (71%), respectively. Surprisingly, COL17A1 mutations accounted for the majority of autosomal-dominant AI cases. CONCLUSIONS: We have developed a novel targeted NGS assay for the efficient molecular diagnosis of a wide variety of orodental diseases. Furthermore, our panel will contribute to better understanding the contribution of these genes to orodental disease. TRIAL REGISTRATION NUMBERS: NCT01746121 and NCT02397824.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Mutación , Anomalías Dentarias/genética , Amelogénesis Imperfecta/genética , Autoantígenos/genética , Deleción Cromosómica , Trastornos de los Cromosomas/genética , Cromosomas Humanos Par 11/genética , Estudios de Cohortes , Coloboma/genética , Displasia de la Dentina/genética , Francia , Pérdida Auditiva Sensorineural/genética , Humanos , Colágenos no Fibrilares/genética , Reproducibilidad de los Resultados , Colágeno Tipo XVII
13.
Nat Commun ; 6: 8823, 2015 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-26549758

RESUMEN

T-cell development is accompanied by epigenetic changes that ensure the silencing of stem cell-related genes and the activation of lymphocyte-specific programmes. How transcription factors influence these changes remains unclear. We show that the Ikaros transcription factor forms a complex with Polycomb repressive complex 2 (PRC2) in CD4(-)CD8(-) thymocytes and allows its binding to more than 500 developmentally regulated loci, including those normally activated in haematopoietic stem cells and others induced by the Notch pathway. Loss of Ikaros in CD4(-)CD8(-) cells leads to reduced histone H3 lysine 27 trimethylation and ectopic gene expression. Furthermore, Ikaros binding triggers PRC2 recruitment and Ikaros interacts with PRC2 independently of the nucleosome remodelling and deacetylation complex. Our results identify Ikaros as a fundamental regulator of PRC2 function in developing T cells.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Factor de Transcripción Ikaros/genética , Complejo Represivo Polycomb 2/genética , Linfocitos T/inmunología , Timocitos/inmunología , Animales , Western Blotting , Diferenciación Celular/genética , Diferenciación Celular/inmunología , Inmunoprecipitación de Cromatina , Expresión Génica Ectópica , Epigénesis Genética , Perfilación de la Expresión Génica , Silenciador del Gen , Código de Histonas/genética , Histonas/metabolismo , Factor de Transcripción Ikaros/inmunología , Metilación , Ratones , Nucleosomas , Complejo Represivo Polycomb 2/inmunología
14.
PLoS One ; 10(7): e0133387, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26204530

RESUMEN

Collier, the single Drosophila COE (Collier/EBF/Olf-1) transcription factor, is required in several developmental processes, including head patterning and specification of muscle and neuron identity during embryogenesis. To identify direct Collier (Col) targets in different cell types, we used ChIP-seq to map Col binding sites throughout the genome, at mid-embryogenesis. In vivo Col binding peaks were associated to 415 potential direct target genes. Gene Ontology analysis revealed a strong enrichment in proteins with DNA binding and/or transcription-regulatory properties. Characterization of a selection of candidates, using transgenic CRM-reporter assays, identified direct Col targets in dorso-lateral somatic muscles and specific neuron types in the central nervous system. These data brought new evidence that Col direct control of the expression of the transcription regulators apterous and eyes-absent (eya) is critical to specifying neuronal identities. They also showed that cross-regulation between col and eya in muscle progenitor cells is required for specification of muscle identity, revealing a new parallel between the myogenic regulatory networks operating in Drosophila and vertebrates. Col regulation of eya, both in specific muscle and neuronal lineages, may illustrate one mechanism behind the evolutionary diversification of Col biological roles.


Asunto(s)
Tipificación del Cuerpo/genética , Mapeo Cromosómico , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica , Factores de Transcripción/genética , Animales , Animales Modificados Genéticamente , Sitios de Unión , Embrión no Mamífero , Redes Reguladoras de Genes , Transducción de Señal/genética
15.
Res Microbiol ; 166(3): 205-14, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25753102

RESUMEN

Pseudomonas xanthomarina S11 is an arsenite-oxidizing bacterium isolated from an arsenic-contaminated former gold mine in Salsigne, France. This bacterium showed high resistance to arsenite and was able to oxidize arsenite to arsenate at concentrations up to 42.72 mM As[III]. The genome of this strain was sequenced and revealed the presence of three ars clusters. One of them is located on a plasmid and is organized as an "arsenic island" harbouring an aio operon and genes involved in phosphorous metabolism, in addition to the ars genes. Neither the aioXRS genes nor a specific sigma-54-dependent promoter located upstream of aioBA genes, both involved in regulation of arsenite oxidase expression in other arsenite-oxidizing bacteria, could be identified in the genome. This observation is in accordance with the fact that no difference was observed in expression of arsenite oxidase in P. xanthomarina S11, whether or not the strain was grown in the presence of As[III].


Asunto(s)
Arsénico/metabolismo , Proteínas Bacterianas/genética , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Pseudomonas/genética , Arseniatos/metabolismo , Arsénico/farmacología , ATPasas Transportadoras de Arsenitos/genética , ATPasas Transportadoras de Arsenitos/metabolismo , Arsenitos/metabolismo , Arsenitos/farmacología , Proteínas Bacterianas/metabolismo , Secuencia de Bases , ADN Bacteriano , Farmacorresistencia Bacteriana , Francia , Regulación Bacteriana de la Expresión Génica , Minería , Operón , Oxidación-Reducción , Filogenia , Plásmidos , Pseudomonas/enzimología , Pseudomonas/crecimiento & desarrollo , Pseudomonas/aislamiento & purificación
16.
J Med Genet ; 51(11): 724-36, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25167861

RESUMEN

BACKGROUND: Intellectual disability (ID) is characterised by an extreme genetic heterogeneity. Several hundred genes have been associated to monogenic forms of ID, considerably complicating molecular diagnostics. Trio-exome sequencing was recently proposed as a diagnostic approach, yet remains costly for a general implementation. METHODS: We report the alternative strategy of targeted high-throughput sequencing of 217 genes in which mutations had been reported in patients with ID or autism as the major clinical concern. We analysed 106 patients with ID of unknown aetiology following array-CGH analysis and other genetic investigations. Ninety per cent of these patients were males, and 75% sporadic cases. RESULTS: We identified 26 causative mutations: 16 in X-linked genes (ATRX, CUL4B, DMD, FMR1, HCFC1, IL1RAPL1, IQSEC2, KDM5C, MAOA, MECP2, SLC9A6, SLC16A2, PHF8) and 10 de novo in autosomal-dominant genes (DYRK1A, GRIN1, MED13L, TCF4, RAI1, SHANK3, SLC2A1, SYNGAP1). We also detected four possibly causative mutations (eg, in NLGN3) requiring further investigations. We present detailed reasoning for assigning causality for each mutation, and associated patients' clinical information. Some genes were hit more than once in our cohort, suggesting they correspond to more frequent ID-associated conditions (KDM5C, MECP2, DYRK1A, TCF4). We highlight some unexpected genotype to phenotype correlations, with causative mutations being identified in genes associated to defined syndromes in patients deviating from the classic phenotype (DMD, TCF4, MECP2). We also bring additional supportive (HCFC1, MED13L) or unsupportive (SHROOM4, SRPX2) evidences for the implication of previous candidate genes or mutations in cognitive disorders. CONCLUSIONS: With a diagnostic yield of 25% targeted sequencing appears relevant as a first intention test for the diagnosis of ID, but importantly will also contribute to a better understanding regarding the specific contribution of the many genes implicated in ID and autism.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Técnicas de Diagnóstico Molecular/métodos , Adolescente , Adulto , Niño , Preescolar , Análisis Mutacional de ADN/métodos , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Análisis de Secuencia de ADN/métodos , Adulto Joven
17.
Sci Signal ; 7(317): ra28, 2014 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-24643801

RESUMEN

The Notch signaling pathway is activated in many cell types, but its effects are cell type- and stage-specific. In the immune system, Notch activity is required for the differentiation of T cell progenitors, but it is reduced in more mature thymocytes, in which Notch is oncogenic. Studies based on single-gene models have suggested that the tumor suppressor protein Ikaros plays an important role in repressing the transcription of Notch target genes. We used genome-wide analyses, including chromatin immunoprecipitation sequencing, to identify genes controlled by Notch and Ikaros in gain- and loss-of-function experiments. We found that Ikaros bound to and directly repressed the expression of most genes that are activated by Notch. Specific deletion of Ikaros in thymocytes led to the persistent expression of Notch target genes that are essential for T cell maturation, as well as the rapid development of T cell leukemias in mice. Expression of Notch target genes that are normally silent in T cells, but are activated by Notch in other cell types, occurred in T cells of mice genetically deficient in Ikaros. We propose that Ikaros shapes the timing and repertoire of the Notch transcriptional response in T cells through widespread targeting of elements adjacent to Notch regulatory sequences. These results provide a molecular framework for understanding the regulation of tissue-specific and tumor-related Notch responses.


Asunto(s)
Genes Supresores de Tumor , Factor de Transcripción Ikaros/fisiología , Receptores Notch/metabolismo , Linfocitos T/metabolismo , Cromatina/metabolismo , Regulación de la Expresión Génica , Humanos , Factor de Transcripción Ikaros/metabolismo , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Unión Proteica , Secuencias Reguladoras de Ácidos Nucleicos , Transcripción Genética
18.
J Cell Sci ; 127(Pt 9): 2095-105, 2014 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-24569880

RESUMEN

Retinoic acid (RA) plays key roles in cell differentiation and growth arrest by activating nuclear RA receptors (RARs) (α, ß and γ), which are ligand-dependent transcription factors. RARs are also phosphorylated in response to RA. Here, we investigated the in vivo relevance of the phosphorylation of RARs during RA-induced neuronal differentiation of mouse embryonic stem cells (mESCs). Using ESCs where the genes encoding each RAR subtype had been inactivated, and stable rescue lines expressing RARs mutated in phospho-acceptor sites, we show that RA-induced neuronal differentiation involves RARγ2 and requires RARγ2 phosphorylation. By gene expression profiling, we found that the phosphorylated form of RARγ2 regulates a small subset of genes through binding an unusual RA response element consisting of two direct repeats with a seven-base-pair spacer. These new findings suggest an important role for RARγ phosphorylation during cell differentiation and pave the way for further investigations during embryonic development.


Asunto(s)
Receptores de Ácido Retinoico/metabolismo , Tretinoina/farmacología , Animales , Diferenciación Celular/efectos de los fármacos , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Ratones , Fosforilación , Receptor de Ácido Retinoico gamma
19.
Eur J Hum Genet ; 22(6): 776-83, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24169519

RESUMEN

Intellectual disability (ID) is characterized by an extraordinary genetic heterogeneity, with >250 genes that have been implicated in monogenic forms of ID. Because this complexity precluded systematic testing for mutations and because clinical features are often non-specific, for some of these genes only few cases or families have been unambiguously documented. It is the case of the X-linked gene encoding monoamine oxidase A (MAOA), for which only one nonsense mutation has been identified in Brunner syndrome, characterized in a single family by mild non-dysmorphic ID and impulsive, violent and aggressive behaviors. We have performed targeted high-throughput sequencing of 220 genes, including MAOA, in patients with undiagnosed ID. We identified a c.797_798delinsTT (p.C266F) missense mutation in MAOA in a boy with autism spectrum disorder, attention deficit and autoaggressive behavior. Two maternal uncles carry the mutation and have severe ID, with a history of maltreatment in early childhood. This novel missense mutation decreases MAOA enzymatic activity, leading to abnormal levels of urinary monoamines. The identification of this new point mutation confirms, for the first time since 1993, the monogenic implication of the MAOA gene in ID of various degrees, autism and behavioral disturbances. The variable expressivity of the mutation observed in male patients of this family may involve gene-environment interactions, and the identification of a perturbation in monoamine metabolism should be taken into account when prescribing psychoactive drugs in such patients.


Asunto(s)
Déficit de la Atención y Trastornos de Conducta Disruptiva/genética , Trastornos Generalizados del Desarrollo Infantil/genética , Predisposición Genética a la Enfermedad/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Monoaminooxidasa/genética , Mutación Missense , Secuencia de Aminoácidos , Secuencia de Bases , Salud de la Familia , Femenino , Humanos , Discapacidad Intelectual/genética , Masculino , Modelos Moleculares , Monoaminooxidasa/química , Monoaminooxidasa/metabolismo , Linaje , Estructura Terciaria de Proteína
20.
J Cell Sci ; 127(Pt 3): 521-33, 2014 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-24357724

RESUMEN

Nuclear retinoic acid (RA) receptors (RARα, ß and γ) are ligand-dependent transcription factors that regulate the expression of a battery of genes involved in cell differentiation and proliferation. They are also phosphoproteins and we previously showed the importance of their phosphorylation in their transcriptional activity. In the study reported here, we conducted a genome-wide analysis of the genes that are regulated by RARs in mouse embryonic fibroblasts (MEFs) by comparing wild-type MEFs to MEFs lacking the three RARs. We found that in the absence of RA, RARs control the expression of several gene transcripts associated with cell adhesion. Consequently the knockout MEFs are unable to adhere and to spread on substrates and they display a disrupted network of actin filaments, compared with the WT cells. In contrast, in the presence of the ligand, RARs control the expression of other genes involved in signaling and in RA metabolism. Taking advantage of rescue cell lines expressing the RARα or RARγ subtypes (either wild-type or mutated at the N-terminal phosphorylation sites) in the null background, we found that the expression of RA-target genes can be controlled either by a specific single RAR or by a combination of RAR isotypes, depending on the gene. We also selected genes that require the phosphorylation of the receptors for their regulation by RA. Our results increase the repertoire of genes that are regulated by RARs and highlight the complexity and diversity of the transcriptional programs regulated by RARs, depending on the gene.


Asunto(s)
Adhesión Celular/genética , Receptores de Ácido Retinoico/biosíntesis , Animales , Diferenciación Celular/genética , Proliferación Celular , Fibroblastos/citología , Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Ratones , Fosforilación , Receptores de Ácido Retinoico/genética , Receptor alfa de Ácido Retinoico , Transducción de Señal , Receptor de Ácido Retinoico gamma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...