Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Oncogene ; 41(10): 1468-1481, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35064215

RESUMEN

Metastases are often the direct cause of death from pancreatic ductal adenocarcinoma (PDAC). The role of genomic alterations (GA) in mediating tropism and metastasis formation by PDAC cells is currently unknown. We aimed to identify GAs predisposing colonization of PDAC cells to the liver and decipher mechanisms enabling this process. In order to reveal specific genes, we studied the frequency of GA in 8,880 local and 7,983 metastatic PDAC samples. We observed differential pattern of GA in the local tumor and specific metastatic sites, with liver metastases characterized by deletion of CDKN2A/B (encoding p16/p15, respectively). The role of CDKN2A/B in promoting liver metastasis was evidenced by enhanced tumorigenic phenotype of p15/p16-deleted PDAC cells when exposed to hepatocytes conditioned media. The liver is characterized by high-ammonia low-glutamine environment and transcriptomic assays indicated unique adaptation of PDAC cells to these conditions, including regulation of genes leading to reduced glutaminolysis, like overexpression of GLUL and reduction in GLS2. Furthermore, metabolic assays indicated an increase in glutamate derived from [U-13C]-glucose in p15/p16-deleted cells. Importantly, these cells thrived under high ammonia condition. These data suggest a unique role for genomic alterations in mediating tropism of PDAC. Among these alterations, p15/16 deletion was identified as a promoter of liver metastases. Further studies indicated a unique role for p15/16 in regulating glutaminolysis. These findings reveal vulnerabilities in PDAC cells, which may pave the way for the development of novel therapeutic strategies aiming at the prevention of liver metastases formation.


Asunto(s)
Adenocarcinoma , Carcinoma Ductal Pancreático , Neoplasias Hepáticas , Neoplasias Pancreáticas , Amoníaco/uso terapéutico , Carcinoma Ductal Pancreático/patología , Inhibidor p15 de las Quinasas Dependientes de la Ciclina , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Pancreáticas/metabolismo , Tropismo , Neoplasias Pancreáticas
2.
BMC Cancer ; 20(1): 531, 2020 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-32513126

RESUMEN

BACKGROUND: Estrogen receptor α (ESR1) plays a critical role in promoting growth of various cancers. Yet, its role in the development of pancreatic cancer is not well-defined. A less studied region of ESR1 is the hinge region, connecting the ligand binding and DNA domains. rs142712646 is a rare SNP in ESR1, which leads to a substitution of arginine to cysteine at amino acid 269 (R269C). The mutation is positioned in the hinge region of ESR1, hence may affect the receptor structure and function. We aimed to characterize the activity of R269C-ESR1 and study its role in the development of pancreatic cancer. METHODS: Transcriptional activity was evaluated by E2-response element (ERE) and AP1 -luciferase reporter assays and qRT-PCR. Proliferation and migration were assessed using MTT and wound healing assays. Gene-expression analysis was performed using RNAseq. RESULTS: We examined the presence of this SNP in various malignancies, using the entire database of FoundationOne and noted enrichment of it in a subset of pancreatic non-ductal adenocarcinoma (n = 2800) compared to pancreatic ductal adenocarcinoma (PDAC) as well as other tumor types (0.53% vs 0.29%, p = 0.02). Studies in breast and pancreatic cancer cells indicated cell type-dependent activity of ESR1 harboring R269C. Thus, expression of R269C-ESR1 enhanced proliferation and migration of PANC-1 and COLO-357 pancreatic cancer cells but not of MCF-7 breast cancer cells. Moreover, R269C-ESR1 enhanced E2-response elements (ERE) and AP1-dependent transcriptional activity and increased mRNA levels of ERE and AP1-regulated genes in pancreatic cancer cell lines, but had a modest effect on MCF-7 breast cancer cells. Accordingly, whole transcriptome analysis indicated alterations of genes associated with tumorigenicity in pancreatic cancer cells and upregulation of genes associated with cell metabolism and hormone biosynthesis in breast cancer cells. CONCLUSIONS: Our study shed new light on the role of the hinge region in regulating transcriptional activity of the ER and indicates cell-type specific activity, namely increased activity in pancreatic cancer cells but reduced activity in breast cancer cells. While rare, the presence of rs142712646 may serve as a novel genetic risk factor, and a possible target for therapy in a subset of non-ductal pancreatic cancers.


Asunto(s)
Neoplasias de la Mama/genética , Receptor alfa de Estrógeno/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Pancreáticas/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Receptor alfa de Estrógeno/metabolismo , Femenino , Humanos , Neoplasias Pancreáticas/patología , Polimorfismo de Nucleótido Simple , Dominios Proteicos/genética , RNA-Seq , Elementos de Respuesta/genética , Factores de Riesgo , Transcripción Genética
4.
Purinergic Signal ; 15(2): 247-263, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31025169

RESUMEN

Overproduction of extracellular diphosphate due to hydrolysis of ATP by NPP1 leads to pathological calcium diphosphate (pyrophosphate) dihydrate deposition (CPPD) in cartilage, resulting in a degenerative joint disease that today lacks a cure. Here, we targeted the identification of novel NPP1 inhibitors as potential therapeutic agents for CPPD deposition disease. Specifically, we synthesized novel analogs of AMP (NPP1 reaction product) and ADP (NPP1 inhibitor). These derivatives incorporate several chemical modifications of the natural nucleotides including (1) a methylene group replacing the Pα,ß-bridging oxygen atom to provide metabolic resistance, (2) sulfonate group(s) replacing phosphonate(s) to improve binding to NPP1's catalytic zinc ions, (3) an acyclic nucleotide analog to allow flexible binding in the NPP1 catalytic site, and (4) a benzimidazole base replacing adenine. Among the investigated compounds, adenine-N9-(methoxy)ethyl-ß-bisphosphonate, 10, was identified as an NPP1 inhibitor (Ki 16.3 µM vs. the artificial substrate p-nitrophenyl thymidine-5'-monophosphate (p-Nph-5'-TMP), and 9.60 µM vs. the natural substrate, ATP). Compound 10 was selective for NPP1 vs. human NPP3, human CD39, and tissue non-specific alkaline phosphatase (TNAP), but also inhibited human CD73 (Ki 12.6 µM). Thus, 10 is a dual NPP1/CD73 inhibitor, which could not only be of interest for treating CPPD deposition disease and calcific aortic valve disease but may also be considered for the immunotherapy of cancer. Compound 10 proved to be a promising inhibitor, which almost completely reduces NPPase activity in human osteoarthritic chondrocytes at a concentration of 100 µM.


Asunto(s)
Adenosina Difosfato/análogos & derivados , Adenosina Trifosfato/análogos & derivados , Inhibidores Enzimáticos/farmacología , Pirofosfatasas/antagonistas & inhibidores , Condrocalcinosis , Condrocitos/efectos de los fármacos , Humanos , Osteoartritis , Hidrolasas Diéster Fosfóricas
5.
Clin Cancer Res ; 25(9): 2900-2914, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30733228

RESUMEN

PURPOSE: Mutations in the ligand-binding domain (LBD) of estrogen receptor α (ER) confer constitutive transcriptional activity and resistance to endocrine therapies in patients with breast cancer. Accumulating clinical data suggest adverse outcome for patients harboring tumors expressing these mutations. We aimed to elucidate mechanisms conferring this aggressive phenotype. EXPERIMENTAL DESIGN: Cells constitutively expressing physiologic levels of ER-harboring activating LBD mutations were generated and characterized for viability, invasiveness, and tumor formation in vivo. Gene expression profile was studied using microarray and RNAseq technologies. Metabolic properties of the cells were assessed using global metabolite screen and direct measurement of metabolic activity. RESULTS: Cells expressing mutated ER showed increased proliferation, migration, and in vivo tumorigenicity compared with cells expressing the wild-type ER (WT-ER), even in the presence of estrogen. Expression of the mutated ER was associated with upregulation of genes involved in invasion and metastases, as well as elevation of genes associated with tumor cell metabolism. Indeed, a metabolic examination revealed four distinct metabolic profiles: WT-ER-expressing cells either untreated or estrogen treated and mutated ER-expressing cells either untreated or estrogen treated. Pathway analyses indicated elevated tricarboxylic acid cycle activity of 537S-ER-expressing cells. Thus, while WT-ER cells were mostly glucose-dependent, 537S-ER were not addicted to glucose and were able to utilize glutamine as an alternative carbon source. CONCLUSIONS: Taken together, these data indicate estrogen-independent rewiring of breast cancer cell metabolism by LBD-activating mutations. These unique metabolic activities may serve as a potential vulnerability and aid in the development of novel treatment strategies to overcome endocrine resistance.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/metabolismo , Receptor alfa de Estrógeno/genética , Mutación con Ganancia de Función , Metaboloma , Animales , Apoptosis , Biomarcadores de Tumor/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Movimiento Celular , Proliferación Celular , Estrógenos/metabolismo , Femenino , Estudios de Seguimiento , Regulación Neoplásica de la Expresión Génica , Glucosa/metabolismo , Glutamina/metabolismo , Humanos , Ligandos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Pronóstico , Unión Proteica , Dominios Proteicos , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Rheumatology (Oxford) ; 57(8): 1472-1480, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29688536

RESUMEN

Objectives: Calcium pyrophosphate deposition (CPPD) is associated with osteoarthritis and is the cause of a common inflammatory articular disease. Ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (eNPP1) is the major ecto-pyrophosphatase in chondrocytes and cartilage-derived matrix vesicles (MVs). Thus, eNPP1 is a principle contributor to extracellular pyrophosphate levels and a potential target for interventions aimed at preventing CPPD. Recently, we synthesized and described a novel eNPP1-specific inhibitor, SK4A, and we set out to evaluate whether this inhibitor attenuates nucleotide pyrophosphatase activity in human OA cartilage. Methods: Cartilage tissue, chondrocytes and cartilage-derived MVs were obtained from donors with OA undergoing arthroplasty. The effect of SK4A on cell viability was assayed by the XTT method. eNPP1 expression was evaluated by western blot. Nucleotide pyrophosphatase activity was measured by a colorimetric assay and by HPLC analysis of adenosine triphosphate (ATP) levels. ATP-induced calcium deposition in cultured chondrocytes was visualized and quantified with Alizarin red S staining. Results: OA chondrocytes expressed eNPP1 in early passages, but this expression was subsequently lost upon further passaging. Similarly, significant nucleotide pyrophosphatase activity was only detected in early-passage chondrocytes. The eNPP1 inhibitor, SK4A, was not toxic to chondrocytes and stable in culture medium and human plasma. SK4A effectively inhibited nucleotide pyrophosphatase activity in whole cartilage tissue, in chondrocytes and in cartilage-derived MVs and reduced ATP-induced CPPD. Conclusion: Nucleotide analogues such as SK4A may be developed as potent and specific inhibitors of eNPP1 for the purpose of lowering extracellular pyrophosphate levels in human cartilage with the aim of preventing and treating CPPD disease.


Asunto(s)
Calcinosis/tratamiento farmacológico , Pirofosfato de Calcio/metabolismo , Condrocalcinosis/tratamiento farmacológico , Condrocitos/patología , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/farmacología , Pirofosfatasas/antagonistas & inhibidores , Calcinosis/metabolismo , Calcinosis/patología , Células Cultivadas , Condrocalcinosis/metabolismo , Condrocalcinosis/patología , Condrocitos/efectos de los fármacos , Condrocitos/metabolismo , Colorimetría , Humanos , Immunoblotting , Hidrolasas Diéster Fosfóricas/biosíntesis , Pirofosfatasas/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA