Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Molecules ; 29(10)2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38792103

RESUMEN

The aim of this work was to assess the chemical composition and physico-chemical, techno-functional, and in vitro antioxidant properties of flours obtained from the peel and flesh of pitahaya (Hylocereus ocamponis) to determine their potential for use as ingredients for food enrichment. The chemical composition, including total betalains, mineral content, and polyphenolic profile, was determined. The techno-functional properties (water holding, oil holding, and swelling capacities) were also evaluated. For the antioxidant capacity, four different methodologies, namely ferrous ion-chelating ability assay, ferric-reducing antioxidant power assay; 1,1-Diphenyl-2-picrylhydrazyl radical scavenging ability assay, and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical assay, were used. Pitahaya-peel flour had higher values for protein (6.72 g/100 g), ash (11.63 g/100 g), and dietary fiber 56.56 g/100 g) than pitahaya-flesh flour, with values of 6.06, 3.63, and 8.22 g/100 g for protein, ash, and dietary fiber, respectively. In the same way, pitahaya peel showed a higher content of minerals, betalains, and polyphenolic compounds than pitahaya-flesh flour, with potassium (4.43 g/100 g), catechin (25.85 mg/g), quercetin-3-rhamnoside (11.66 mg/g) and myricetrin (12.10 mg/g) as principal compounds found in the peel. Again, pitahaya-peel flour showed better techno-functional and antioxidant properties than pitahaya-flesh flour. The results obtained suggest that the flours obtained from the peel and pulp of pitahaya (H. ocamponis) constitute a potential material to be utilized as an ingredient in the food industry due to the high content of bioactive compounds such as betalains, phenolic acids, and flavonoids, with notable antioxidant capacity.


Asunto(s)
Antioxidantes , Cactaceae , Harina , Frutas , Polifenoles , Cactaceae/química , Antioxidantes/química , Antioxidantes/análisis , Frutas/química , Harina/análisis , Polifenoles/análisis , Polifenoles/química , Betalaínas/química , Betalaínas/análisis , Extractos Vegetales/química
2.
J Appl Microbiol ; 134(7)2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37403321

RESUMEN

Chlorine dioxide (ClO2) is a disinfectant gas with strong antifungal, antibacterial, and antiviral activities. Applied on hard, non-porous surfaces as an aqueous solution or gas, the ClO2 exerts antimicrobial activity through its interaction and destabilization of cell membrane proteins, as well as through DNA/RNA oxidation, triggering cell death. As for viruses, the ClO2 promotes protein denaturalization mechanisms, preventing the union between the human cells and the viral envelope. Currently, ClO2 has been pointed out as a potential anti-SARS-CoV-2 clinical treatment for use in humans with the ability to oxidize the cysteine residues in the spike protein of SARS-CoV-2, inhibiting the subsequent binding with the Angiotensin-converting enzyme type 2 receptor, located in the alveolar cells. Orally administered ClO2 reaches the gut tract and exacerbates the symptoms of COVID-19, generating a dysbiosis with gut inflammation and diarrhea as side effects, and once absorbed, produces toxic effects including methemoglobinemia and hemoglobinuria, which can trigger respiratory diseases. These effects are dose-dependent and may not be entirely consistent between individuals since the gut microbiota composition is highly heterogeneous. However, to support the use of ClO2 as an anti-SARS-CoV-2 agent, further studies focused on its effectiveness and safety both in healthy and immunocompromised individuals, are needed.


Asunto(s)
COVID-19 , Compuestos de Cloro , Desinfectantes , Microbioma Gastrointestinal , Humanos , SARS-CoV-2 , Óxidos/farmacología , Óxidos/química , Desinfectantes/farmacología , Compuestos de Cloro/farmacología , Cloro
3.
Food Chem ; 411: 135529, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-36689869

RESUMEN

The flowers of Quararibea funebris tree are an important component of tejate, a traditional Mexican beverage. The flowers exhibited a high concentration of total polyphenolic compounds, total carotenoids, and vitamin C. UPLC analysis revealed the presence of salicylic acid, kaemferol-3-O-glucoside, trans-cinnamic acid, rutin, scopoletin, l-phenylalanine, 4-coumaric acid and quercetin-3-glucoside, among others metabolites. The flowers exhibited volatile compounds as isolongifolene, α-cedrene, 2,5,5-trimethyl-2,3,4,5,6,7-hexahydro-1H-2,4a-ethanonaphthalene, while that linoleic acid, palmitic acid, and linolenic acid were the major fatty acids present in the oil extract. Magnesium, potassium, and calcium were the minerals most abundant in the flowers. In addition the methanolic extract of the flowers exhibited antimicrobial properties against the tested pathogenic microbial strains. In conclusion, these results showed that the Q. funebris flowers not only have an aromatic and flavoring power for the Tejate beverage, but also contains compounds with antioxidant, antimicrobial, and nutraceutical potential, which helps to explain its therapeutic uses.


Asunto(s)
Antiinfecciosos , Bombacaceae , Antioxidantes/farmacología , Antioxidantes/análisis , Extractos Vegetales/farmacología , Extractos Vegetales/análisis , Antibacterianos/farmacología , Flores/química , Suplementos Dietéticos/análisis
4.
Appl Microbiol Biotechnol ; 104(22): 9595-9605, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33037917

RESUMEN

The objective of this work was to evaluate the potential of whey protein concentrate (WPC), native agave fructans (NAF), and their mixture (WPC-NAF, 1:1 w/w) as wall materials and evaluate the physicochemical properties and stability of encapsulated Enterococcus faecium during the spray drying, storage, and passage through the simulated gastrointestinal tests. The encapsulated microorganisms with WPC-NAF by spray drying showed greater viability (9.26 log CFU/g) and a higher microencapsulation yield (88.43%). They also had a smaller reduction in the cell count (0.61 log cycles), while the microcapsules produced with NAF had the greatest reduction in viability during the simulated gastrointestinal tests. Similarly, probiotics encapsulated with WPC-NAF revealed a higher survival rate (> 8 log CFU/g) when stored at a water activity of 0.328. The thermal analysis showed that the addition of NAF to the WPC produced a slight shift in the Tg towards temperatures higher than that shown by NAF. Therefore, this study provides evidence that the spray drying process was appropriate to encapsulate the probiotic strain Enterococcus faecium and that the mixture WPC-NAF protected it from adverse drying conditions and improved the viability of Enterococcus faecium during storage and simulated gastrointestinal tests, demonstrating that the combination of NAF and WPC as encapsulating material is adequate in the production of more stable microcapsules with potential application in various foods.Key Points• E. faecium was successfully encapsulated in WPC and NAF.• WPC-NAF offered protection to E. faecium in the gastrointestinal tests and during storage.• Aw around 0.328 positively influenced the viability of the microorganism during storage. Graphical abstract.


Asunto(s)
Enterococcus faecium , Probióticos , Secado por Pulverización , Cápsulas , Desecación , Probióticos/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...